Verarbeitung ortsbezogener Anfragen in lose gekoppelten, föderierten Systemen: Konzeption, Realisierung, Bewertung

Ortsbezogene Anwendungen nutzen die geographische Position des Benutzers, um ihm darauf masgeschneiderte Informationen anzuzeigen. Sie gelangen an diese Informationen mittels ortsbezogener Anfragen, die sie an einen Datenanbieter stellen. In dieser Arbeit tritt an die Stelle eines einzelnen Datenanbieters nun eine Integrationsmiddleware, welche die raumlichen Daten und die Kontextdaten vieler einzelner Datenanbieter foderiert, so dass daraus ein einziges umfassendes Modell der Umgebung des Benutzers entsteht. Die Verteilung der Daten auf viele Datenanbieter bleibt dabei fur die Anwendungen transparent, so dass fur die Anwendungen der Eindruck bestehen bleibt, als kamen die Daten von einem einzelnen Datenanbieter. Dadurch konnen flexibel und effizient verschiedenste ortsbezogene Anwendungen unterstutzt werden. Ebenso konnen Anwendungen von neuen Datenanbietern profitieren ohne dass sie angepasst werden mussen. Die Datenanbieter sind dabei lose gekoppelt, das heist, sie sind autonom und konnen sich nach Belieben in das Gesamtsystem ein- und ausklinken. Ein Datenanbieter geht keine Verpflichtung ein, Daten liefern zu mussen. Auch konnen Datenanbieter ihre eigenen Daten jederzeit aktualisieren oder erganzen. Diese Arbeit entstand im Rahmen der Forschergruppe Nexus und des Sonderforschungsbereichs 627 "Umgebungsmodelle fur mobile, kontextbezogene Systeme", wobei sich die vorliegende Arbeit auf die Konzeption und Umsetzung der Integrationsmiddleware des Nexus-Systems konzentriert. Die wichtigste Charakteristik ist dabei die Offenheit des Systems fur neue Daten und Datenanbieter. Die Arbeit untersucht dabei zum einen, wie eine solche Integrationsmiddleware in einem solchen Umfeld prinzipiell funktioniert, und wie dabei die Besonderheiten der Anwendungsdomane zu deren Vereinfachung ausgenutzt werden konnen. Zum anderen werden Techniken entwickelt, welche die Charakteristika der Anwendungsdomane der ortsbezogenen Anwendungen ausnutzen, um die Effizienz der Integrationsmiddleware zu steigern. Die Basisarchitektur der Integrationsmiddleware setzt sich aus einer Foderationskomponente und einem Verzeichnisdienst zusammen. Die Foderationskomponente hat dabei die selbe Schnittstelle wie die Datenanbieter, wodurch sich Gebietsanfragen recht einfach verarbeiten lassen. Die automatische Koordinatentransformation kann Geodaten, die in unterschiedlichen Koordinatensystemen vorliegen, beispielsweise weil sie von verschiedenen Datenanbietern stammen, automatisch in ein adaquates gemeinsames Koordinatensystem umrechnen, so dass diese gemeinsam verarbeitet und verglichen werden konnen. Die Verteilung der Daten auf mehrere Anbieter und deren Zusammenfuhrung in der Integrationsmiddleware verursacht das Phanomen der Mehrfachreprasentationen, weshalb das Datenmodell Mehrfachattribute unterstutzen muss. Die dadurch herbeigefuhrte Komplexitatssteigerung muss entsprechend in der formalen Definition der Anfragesemantik berucksichtigt werden und fuhrt zu vier paarweise dualen Semantikvarianten. Des Weiteren werden einige Konzepte vorgestellt, um mittels der Charakteristika der Anwendungsdomane die Effizienz der Anfrageverarbeitung zu steigern. Um die Vollstandigkeit und Korrektheit von Anfrageergebnissen, die Mehrfachreprasentationen enthalten, garantieren zu konnen, mussen diese zwingend mit speziellen Relationenobjekten verknupft sein, damit der hierzu entworfene Algorithmus die Einzelteile bei der Behandlung von Mehrfachreprasentationen zusammentragen kann. Gegenuber der Garantie freien Verarbeitung von Anfragen konnen hierbei zusatzliche Interaktionen mit den Datenanbietern notwendig werden. Der Ortsbezug der Daten und Anfragen wird bei der Verarbeitung foderierter Nachbarschaftsanfragen ausgenutzt. Durch eine iterative Vorgehensweise und eine geschickte Wahl der parallel angefragten Datenanbieter konnen sowohl die Antwortzeit als auch der Aufwand optimiert werden. Bei der orts- und typbezogenen Anfrageverarbeitung werden bekannte Indexverfahren geschickt konfiguriert, um eine kombinierte Indexstruktur in den raumlichen Dimensionen und der Typdimension zu erhalten, um so die typischen Anfragen noch effizienter verarbeiten zu konnen. Schlieslich werden Mechanismen entwickelt, um beliebige domanenspezifische Funktionalitaten in die Anfrageverarbeitung integrieren zu konnen. Die funktionalitaten konnen dort zum einen vom direkten Zugriff auf das Umgebungsmodell profitieren. Zum anderen schafft dies die Voraussetzungen, um deren Ergebnisse fur andere Anwendungen oder Benutzer wiederverwenden zu konnen. Insgesamt werden in dieser Arbeit die Grundprobleme gelost, wie sich verteilte Umgebungsmodelle lose gekoppelter Datenanbieter foderieren lassen, wie ortsbezogene Anfragen in einem solchen Umfeld verarbeitet werden konnen, und wie sich der Kontextbezug und weitere Spezifika der Anwendungsdomane zur Steigerung der Leistung und Effizienz ausnutzen lassen. Location-based applications leverage the user's position in order to tailor the presented information to his current location. Those applications retrieve such information by issuing spatial queries to a data provider. In this thesis, we replace the single data provider by an integration middleware that federates the spatial data and the context data of many data providers leading to a single, extensive model of the user's environment. The distribution of the data across several data providers remains transparent for the applications, so that they still perceive the data to originate from a single data provider. The data providers are loosely coupled, meaning that they remain autonomous and that they may enter and leave the federation whenever they like. A data provider has no obligation to supply any data, but it has the opportunity to update or supplement its own data at any time. The core integration concept is a common, global data model, which targets the entire application domain and not just a single application. This allows to support very different location-based applications in a flexible and efficient way, and encourages data reuse by diverse applications. Also, applications may profit from new data providers without having to be modified. The contents of this thesis has been developed in the context of the research group Nexus and the center of excellence 627 "context models for mobile, context-aware systems". This thesis focuses on the concepts and implementation of the Nexus systems's integration middleware. The system's most important characteristic is its openness for new data and new data providers. In this thesis, we investigate the architectural basics of such an integration middleware for the above described scenario and stress the simplifications that arise by leveraging the specifics of the application domain. Furthermore, we develop techniques that increase the integration middleware's efficiency by considering the characteristics of the application domain of location-based applications. The integration middleware's basic architecture comprises a federation component and a discovery service. The federation component features the same interface as the data providers. Hence, the query engine for processing spatial queries can be very simple and forward the queries to the relevant providers obtained from the discovery service. The integration of the returned results can be as simple as concatenating the individual results and merging the data corresponding to the same real world entity. The distribution of the data across several data providers and the merging of this data in the integration middleware leads to the phenomenon of multiple representations. Therefore, the data model needs to support multi attributes. At the same time, this increases the complexity of data processing, which has to be reflected in the formal definitions of the query semantics and which leads to four pairwise complementary variants of the query semantics. Furthermore, we present concepts to make query processing more efficient by leveraging the characteristics of the application domain. In order to ensure the completeness and correctness of query results containing multiple representations, those multiple representations need to be linked by special relationship objects. This allows the proposed query processing algorithm to collect all distributed parts of a multiple representation. Compared to a best effort processing approach that does not guarantee anything, additional interactions with data providers may become necessary. We exploit the location-awareness of data and queries when processing federated nearest neighbor queries. By using an iterative approach and by cleverly determining the set of data providers addressed in parallel in each iteration we optimize response time and effort at the same time. We have developed a location and type-aware query processing engine that cleverly configures well known indexing approaches in order to obtain an index structure that combines the spatial and type dimension. This allows to process typical queries more efficiently. Finally we have developed mechanisms that allow to integrate arbitrary domain-specific functionality into the query engine. Such functionality has the advantage of being able to directly access the context model. Additionally, the integration into the query engine is a prerequisite for reusing intermediate results for other users or applications. To put it in a nutshell, this thesis addresses the basic problems of federating distributed context models of loosely coupled data providers, of processing location-based queries in such an environment, and of exploiting context information and other specifics of the application domain for increasing performance and efficiency.

[1]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[2]  Jonathan Goldstein,et al.  Optimizing queries using materialized views: a practical, scalable solution , 2001, SIGMOD '01.

[3]  Sanjiva Weerawarana,et al.  Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI , 2002, IEEE Internet Computing.

[4]  K. Selçuk Candan,et al.  Load and network aware query routing for information integration , 2005, 21st International Conference on Data Engineering (ICDE'05).

[5]  Kien A. Hua,et al.  A General Multidimensional Data Allocation Method for Multicomputer Database Systems , 1997, DEXA.

[6]  Gregory D. Abowd,et al.  The context toolkit: aiding the development of context-enabled applications , 1999, CHI '99.

[7]  Hagen Höpfner,et al.  An Indexing Scheme for Update Notification in Large Mobile Information Systems , 2004, EDBT Workshops.

[8]  D. Nicklas,et al.  Efficient Domain-Specific Information Integration in Nexus , 2004 .

[9]  Marco Patella,et al.  A Query-sensitive Cost Model for Similarity Queries with M-tree , 1999, Australasian Database Conference.

[10]  Rui José,et al.  Using a Private Uddi for Publishing Location-Based Information to Mobile Users , 2003, ELPUB.

[11]  Mark Sanderson,et al.  Spatio-textual Indexing for Geographical Search on the Web , 2005, SSTD.

[12]  Donald D. Chamberlin,et al.  Implementation of a structured English query language , 1975, SIGMOD '75.

[13]  Thomas A. Mück,et al.  A configurable type hierarchy index for OODB , 1997, The VLDB Journal.

[14]  Sriram Padmanabhan,et al.  Scalable template-based query containment checking for Web semantic caches , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[15]  Albrecht Schmidt,et al.  Context-Aware Telephony Over WAP , 2000 .

[16]  Beng Chin Ooi,et al.  H-trees: a dynamic associative search index for OODB , 1992, SIGMOD '92.

[17]  Hamid Pirahesh,et al.  Cache Tables: Paving the Way for an Adaptive Database Cache , 2003, VLDB.

[18]  Hui Lei,et al.  Composing pervasive data using iQL , 2002, Proceedings Fourth IEEE Workshop on Mobile Computing Systems and Applications.

[19]  Kenneth A. Ross,et al.  Selection conditions in main memory , 2004, TODS.

[20]  Setsuo Ohsuga,et al.  INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES , 1977 .

[21]  Kurt Rothermel,et al.  How to observe real-world events through a distributed world model , 2004, Proceedings. Tenth International Conference on Parallel and Distributed Systems, 2004. ICPADS 2004..

[22]  Donald D. Chamberlin,et al.  Access Path Selection in a Relational Database Management System , 1989 .

[23]  Volker Walter,et al.  Matching spatial data sets: a statistical approach , 1999, Int. J. Geogr. Inf. Sci..

[24]  Carl Kesselman,et al.  Grid-based metadata services , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[25]  Laura M. Haas,et al.  The Clio project: managing heterogeneity , 2001, SGMD.

[26]  E. F. Codd,et al.  Missing information (applicable and inapplicable) in relational databases , 1986, SGMD.

[27]  Bertram Ludäscher,et al.  Registering Scientific Information Sources for Semantic Mediation , 2002, ER.

[28]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[29]  Daniela Nicklas,et al.  NexusScout: An Advanced Location-Based Application on a Distributed, Open Mediation Platform , 2003, VLDB.

[30]  Tim Kindberg,et al.  The Cooltown User Experience , 2001 .

[31]  Ee-Peng Lim,et al.  Efficient k nearest neighbor queries on remote spatial databases using range estimation , 2002, Proceedings 14th International Conference on Scientific and Statistical Database Management.

[32]  Joan M. Morrissey,et al.  Imprecise information and uncertainty in information systems , 1990, TOIS.

[33]  Yannis Manolopoulos,et al.  Similarity query processing using disk arrays , 1998, SIGMOD '98.

[34]  Margaret H. Dunham,et al.  Using semantic caching to manage location dependent data in mobile computing , 2000, MobiCom '00.

[35]  C. Pichot,et al.  A Model-Based , 1991 .

[36]  Bernhard Mitschang,et al.  Exploiting Type and Space in a Main Memory Query Engine , 2006, GeoInfo.

[37]  Kurt Rothermel,et al.  Architecture of a large-scale location service , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[38]  Carlo Zaniolo,et al.  Using SQL to Build New Aggregates and Extenders for Object- Relational Systems , 2000, VLDB.

[39]  Frank Dürr,et al.  On a Location Model for Fine-Grained Geocast , 2003, UbiComp.

[40]  Roy Want,et al.  Making Everyday Life Easier Using Dense Sensor Networks , 2001, UbiComp.

[41]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[42]  Beng Chin Ooi,et al.  Indexing the Distance: An Efficient Method to KNN Processing , 2001, VLDB.

[43]  Bernhard Mitschang,et al.  On building location aware applications using an open platform based on the NEXUS Augmented World Model , 2003, Software and Systems Modeling.

[44]  Fritz Hohl,et al.  Next century challenges: Nexus—an open global infrastructure for spatial-aware applications , 1999, MobiCom.

[45]  D. Box,et al.  Simple Object Access Protocol (SOAP) 1.1, W3C Note , 2000 .

[46]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[47]  Ulf Leser,et al.  Federated Information Systems: Concepts, Terminology and Architectures , 2007 .

[48]  Daniela Nicklas,et al.  Efficiently Managing Context Information for Large-Scale Scenarios , 2005, Third IEEE International Conference on Pervasive Computing and Communications.

[49]  E. F. Codd More commentary on missing information in relational databases (applicable and inapplicable information) , 1987, SGMD.

[50]  Theo Härder,et al.  Datenbank-Caching - Eine systematische Analyse möglicher Verfahren , 2004, Informatik Forschung und Entwicklung.

[51]  Bernhard Seeger,et al.  XXL - A Library Approach to Supporting Efficient Implementations of Advanced Database Queries , 2001, VLDB.

[52]  Gunter Saake,et al.  Adding Conflict Resolution Features to a Query Language for Database Federations , 2000, Australas. J. Inf. Syst..

[53]  M. Weiser The Computer for the Twenty-First Century , 1991 .

[54]  Bernhard Mitschang,et al.  A Model-Based, Open Architecture for Mobile, Spatially Aware Applications , 2001, SSTD.

[55]  Ian Horrocks,et al.  OIL in a Nutshell , 2000, EKAW.

[56]  Divyakant Agrawal,et al.  Concentric hyperspaces and disk allocation for fast parallel range searching , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[57]  Christos Faloutsos,et al.  Declustering using fractals , 1993, [1993] Proceedings of the Second International Conference on Parallel and Distributed Information Systems.

[58]  Khaled A. S. Abdel-Ghaffar,et al.  Cyclic allocation of two-dimensional data , 1998, Proceedings 14th International Conference on Data Engineering.

[59]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[60]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[61]  Steffen Volz Management and Conflation of Multiple Representations within an Open Federation Platform , 2006, Spatial Data: mining, processing and communicating.

[62]  Wei Sun,et al.  Solving satisfiability and implication problems in database systems , 1996, TODS.

[63]  Felix Naumann,et al.  Declarative Data Fusion - Syntax, Semantics, and Implementation , 2005, ADBIS.

[64]  Joseph M. Hellerstein,et al.  Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.

[65]  Daniela Florescu,et al.  AJAX: An Extensible Data Cleaning Tool , 2000, SIGMOD Conference.

[66]  Martin L. Kersten,et al.  Optimizing database architecture for the new bottleneck: memory access , 2000, The VLDB Journal.

[67]  Tim Berners-Lee,et al.  Weaving The Web: The Original Design And Ultimate Destiny of the World Wide Web , 1999 .

[68]  Bernhard Mitschang,et al.  On efficiently processing nearest neighbor queries in a loosely coupled set of data sources , 2004, GIS '04.

[69]  Laura M. Haas,et al.  Transforming Heterogeneous Data with Database Middleware: Beyond Integration , 1999, IEEE Data Eng. Bull..

[70]  Bruce J. Neubauer Web Services and Service-Oriented Architectures , 2008 .

[71]  Alon Y. Halevy,et al.  Answering queries using views: A survey , 2001, The VLDB Journal.

[72]  G. H. Gessert,et al.  Four valued logic for relational database systems , 1990, SGMD.

[73]  Laura M. Haas,et al.  Towards an information infrastructure for the grid , 2004, IBM Syst. J..

[74]  Daniela Nicklas,et al.  A library for managing spatial context using arbitrary coordinate systems , 2004, IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second.

[75]  Alan Saalfeld BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION REPORT SERIES SRD Research Report Number: Census/SRD/RR-87124 Conflation: Automated Map Compilation , 1987 .

[76]  Prasant Mohapatra,et al.  Characterization of E-Commerce Traffic , 2003, Electron. Commer. Res..

[77]  Bernhard Mitschang,et al.  Federating Location-Based Data Services , 2005, Data Management in a Connected World.

[78]  S. Volz,et al.  LINKING DIFFERENT GEOSPATIAL DATABASES BY EXPLICIT RELATIONS , 2004 .

[79]  Sergio Greco,et al.  Integrating and Managing Conflicting Data , 2001, Ershov Memorial Conference.

[80]  Anna van Raaphorst OASIS (Organization for the Advancement of Structured Information Standards) , 2006 .

[81]  Carlo Zaniolo,et al.  Query Languages and Data Models for Database Sequences and Data Streams , 2004, VLDB.

[82]  Steffen Staab,et al.  SEAL - Tying Up Information Integration and Web Site Management by Ontologies , 2002, IEEE Data Eng. Bull..

[83]  Michael Scharf On the Response Time of Large-scale Composite Web Services , 2005 .

[84]  Ken C. K. Lee,et al.  Semantic query caching in a mobile environment , 1999, MOCO.

[85]  Carl Kesselman,et al.  A Metadata Catalog Service for Data Intensive Applications , 2003, SC.

[86]  Divyakant Agrawal,et al.  Optimal Partitioning for Efficient I/O in Spatial Databases , 2001, Euro-Par.

[87]  Daniela Nicklas,et al.  Keeping Track of "Flying Elephants": Challenges in Large-Scale Management of Complex Mobile Objects , 2004, GI Jahrestagung.

[88]  Sergey Brin,et al.  The Anatomy of a Search Engine , 2009 .

[89]  Jianliang Xu,et al.  Proactive caching for spatial queries in mobile environments , 2005, 21st International Conference on Data Engineering (ICDE'05).

[90]  Fausto Giunchiglia,et al.  Data Management for Peer-to-Peer Computing : A Vision , 2002, WebDB.

[91]  Thomas Ertl,et al.  Design and development of an indoor navigation and object identification system for the blind , 2004, ACM SIGACCESS Access. Comput..

[92]  Dan Suciu,et al.  Schema mediation in peer data management systems , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[93]  Hanan Samet,et al.  Distance browsing in spatial databases , 1999, TODS.

[94]  Martin L. Kersten,et al.  Monet And Its Geographic Extensions: A Novel Approach to High Performance GIS Processing , 1996, EDBT.

[95]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[96]  Daniela Nicklas,et al.  Benefits of Integrating Meta Data into a Context Model , 2005, Third IEEE International Conference on Pervasive Computing and Communications Workshops.

[97]  Daniela Nicklas,et al.  Shared Dynamic Context Models: Benefits for Advanced Sensor Data Fusion for Autonomous Robots , 2005, Artificial Intelligence and Applications.

[98]  Betty Salzberg,et al.  Bulletin of the Technical Committee on Data Engineering , 1995 .

[99]  T. H. Kolbe,et al.  CityGML: Interoperable Access to 3D City Models , 2005 .

[100]  G. V. Goesseln,et al.  INTEGRATION OF GEOSCIENTIFIC DATA SETS AND THE GERMAN DIGITAL MAP USING A MATCHING APPROACH , 2004 .

[101]  Demin Xiong,et al.  Semiautomated matching for network database integration , 2004 .

[102]  Jeffrey F. Naughton,et al.  Caching multidimensional queries using chunks , 1998, SIGMOD '98.

[103]  Tomasz Imielinski,et al.  Incomplete object—a data model for design and planning applications , 1991, SIGMOD '91.

[104]  Erhard Rahm,et al.  Datenbanksysteme: Konzepte und Techniken der Implementierung , 1999 .

[105]  Arthur M. Keller,et al.  A predicate-based caching scheme for client-server database architectures , 1994, Proceedings of 3rd International Conference on Parallel and Distributed Information Systems.

[106]  Theo Härder,et al.  Query Processing in Constraint-Based Database Caches , 2004, IEEE Data Eng. Bull..

[107]  Sukhamay Kundu Conflating two polygonal lines , 2006, Pattern Recognit..

[108]  Harry B. Hunt,et al.  Processing Conjunctive Predicates and Queries , 1980, VLDB.

[109]  Ken C. K. Lee,et al.  Semantic Data Broadcast for a Mobile Environment Based on Dynamic and Adaptive Chunking , 2002, IEEE Trans. Computers.

[110]  Martin Reddy,et al.  The GeoWeb — A New Paradigm for Finding Data on the Web , 2001 .

[111]  Vijay Kumar,et al.  Semantic Caching and Query Processing , 2003, IEEE Trans. Knowl. Data Eng..

[112]  Yannis Manolopoulos,et al.  Parallel processing of nearest neighbor queries in declustered spatial data , 1996, GIS '96.

[113]  Gregory D. Abowd,et al.  The Aware Home: A Living Laboratory for Ubiquitous Computing Research , 1999, CoBuild.

[114]  James A. Hendler,et al.  The semantic Web and its languages , 2000 .

[115]  Joann J. Ordille,et al.  Querying Heterogeneous Information Sources Using Source Descriptions , 1996, VLDB.

[116]  Wolfgang Lehner,et al.  QStream: Deterministic Querying of Data Streams , 2004, VLDB.

[117]  Pedro José Marrón,et al.  An enhanced hoarding approach based on graph analysis , 2004, IEEE International Conference on Mobile Data Management, 2004. Proceedings. 2004.

[118]  Peter Lammich,et al.  Collections Framework , 2009, Arch. Formal Proofs.

[119]  M. Tamer Özsu,et al.  Conflict tolerant queries in AURORA , 1999, Proceedings Fourth IFCIS International Conference on Cooperative Information Systems. CoopIS 99 (Cat. No.PR00384).

[120]  Christos Faloutsos,et al.  Declustering Spatial Databases on a Multi-Computer Architecture , 1996, EDBT.

[121]  Marko Vrhovnik Update-Propagation in gestaffelten und verteilten Caches , 2005, BTW Studierenden-Programm.

[122]  Sridhar Ramaswamy,et al.  OODB indexing by class-division , 1995, SIGMOD '95.

[123]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[124]  Jennifer Widom,et al.  The TSIMMIS Approach to Mediation: Data Models and Languages , 1997, Journal of Intelligent Information Systems.

[125]  Jim Smith,et al.  Distributed Query Processing on the Grid , 2003, Int. J. High Perform. Comput. Appl..

[126]  Per-Åke Larson,et al.  Computing Queries from Derived Relations , 1985, VLDB.

[127]  Dieter Fensel,et al.  Ontology Library Systems: The key to successful Ontology Reuse , 2001, SWWS.

[128]  Wolfgang Hoschek A database for Dynamic Distributed Content and its Application , 2002, Sci. Ann. Cuza Univ..

[129]  Yannis Papakonstantinou,et al.  Object Fusion in Mediator Systems , 1996, VLDB.

[130]  Aijun Chen,et al.  Grid metadata catalog service-based OGC web registry service , 2004, GIS '04.

[131]  Christian Becker,et al.  From home to world - supporting context-aware applications through world models , 2004, Second IEEE Annual Conference on Pervasive Computing and Communications, 2004. Proceedings of the.

[132]  Daniela Nicklas,et al.  Ein umfassendes Umgebungsmodell als Integrationsstrategie für ortsbezogene Daten und Dienste , 2005 .

[133]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[134]  Christian Böhm,et al.  Fast parallel similarity search in multimedia databases , 1997, SIGMOD '97.

[135]  Hans-Peter Kriegel,et al.  Fast nearest neighbor search in high-dimensional space , 1998, Proceedings 14th International Conference on Data Engineering.

[136]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[137]  S. Arya Nearest neighbor searching and applications , 1996 .

[138]  Dennis Shasha,et al.  AJAX: an extensible data cleaning tool , 2000, SIGMOD '00.

[139]  Patricia G. Selinger,et al.  Access path selection in a relational database management system , 1979, SIGMOD '79.

[140]  Michael J. Carey,et al.  O-O, What Have They Done to DB2? , 1999, VLDB.

[141]  Carl Mattocks,et al.  Enhancing ebXML Registries to Make them OWL Aware , 2005, Distributed and Parallel Databases.

[142]  Divesh Srivastava,et al.  Semantic Data Caching and Replacement , 1996, VLDB.

[143]  Ada Wai-Chee Fu,et al.  Enhanced nearest neighbour search on the R-tree , 1998, SGMD.

[144]  Warren Smith,et al.  An Evaluation of Alternative Designs for a Grid Information Service , 2004, Cluster Computing.

[145]  Hanan Samet,et al.  Ranking in Spatial Databases , 1995, SSD.

[146]  Bernhard Mitschang,et al.  Design and Implementation Issues for Explorative Location-based Applications: The NexusRallye , 2004, GEOINFO.

[147]  Reagan Moore,et al.  MySRB & SRB: Components of a Data Grid , 2002 .

[148]  Won Kim,et al.  Indexing Techniques for Object-Oriented Databases , 1989, Object-Oriented Concepts, Databases, and Applications.

[149]  Amihai Motro,et al.  Fusionplex: resolution of data inconsistencies in the integration of heterogeneous information sources , 2006, Inf. Fusion.

[150]  Jan-Henrik Haunert Link based Conflation of Geographic Datasets , 2005 .

[151]  Keith Cheverst,et al.  Developing a context-aware electronic tourist guide: some issues and experiences , 2000, CHI.

[152]  Judith R. Davis,et al.  IBM’S DB2 SPATIAL EXTENDER: MANAGING GEO-SPATIAL INFORMATION WITHIN THE DBMS , 1998 .

[153]  Vijayshankar Raman,et al.  Data Access and Management Services on Grid , 2002 .

[154]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[155]  Ian T. Foster,et al.  Grid information services for distributed resource sharing , 2001, Proceedings 10th IEEE International Symposium on High Performance Distributed Computing.