The Picard Group of an Order and Külshammer Reduction

[1]  Florian Eisele,et al.  On the geometry of lattices and finiteness of Picard groups , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[2]  M. Linckelmann,et al.  On Picard groups of blocks of finite groups , 2018, Journal of Algebra.

[3]  Charles W. Eaton,et al.  Donovan’s conjecture, blocks with abelian defect groups and discrete valuation rings , 2018, Mathematische Zeitschrift.

[4]  Charles W. Eaton,et al.  Towards Donovan's conjecture for abelian defect groups , 2017, Journal of Algebra.

[5]  B. Külshammer Morita equivalent blocks in Clifford theory of finite groups , 2019 .

[6]  A. Bergmann Introduction To Homological Algebra , 2016 .

[7]  T. Browning,et al.  Local Fields , 2008 .

[8]  Julia Collins,et al.  HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[9]  Olaf Duevel On Donovan's conjecture , 2004 .

[10]  Martin Hertweck,et al.  On Principal Blocks of p‐Constrained Groups , 2002 .

[11]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[12]  Shigeo Koshitani,et al.  Morita Equivalent Blocks in Non‐Normal Subgroups and p‐Radical Blocks in Finite Groups , 1999 .

[13]  B. Külshammer Donovan’s conjecture, crossed products and algebraic group actions , 1995 .

[14]  Alfred Weiss,et al.  Rigidity of $p$-adic $p$-torsion , 1988 .

[15]  B. Külshammer On p-blocks of p-solvable groups , 1981 .

[16]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[17]  D. G. Higman On isomorphisms of orders. , 1959 .