Comparison of Experimental and Computed Species Concentration and Temperature Profiles in Laminar, Two-Dimensional Methane/Air Diffusion Flames

Abstract Experimental concentration measurements of the major stable species and five radical species (OH., H atom, O atom, CH., and CH3) obtained on a rectangular Wolfhard-Parker slot burner are compared with a detailed computation of the chemical structure of an axisymmctric laminar, CH4/air diffusion flame burning at atmospheric pressure. In order to examine these CH4/air flames with different geometries and different sizes, the species profiles are plotted as functions of the local mixture fraction, and the scalar dissipation rate has been matched in a region around the stoichiometric surface. The overall agreement in the absolute concentrations, the shape of the profiles, and their location in terms of the local mixture fraction is good to excellent for the stable species (except for O2) and for the most abundant radicals OH, H atom, and O atom. For example, the calculated OH- maximum concentration is in much better agreement with the experimental results than are full equilibrium and partial equilib...

[1]  Robert W. Bilger,et al.  The Structure of Diffusion Flames , 1976 .

[2]  W. Mallard,et al.  Chemical production rates of intermediate hydrocarbons in a methane/air diffusion flame , 1988 .

[3]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[4]  Reginald E. Mitchell,et al.  Experimental and numerical investigation of confined laminar diffusion flames , 1980 .

[5]  R. Blint,et al.  Relative importance of nitric oxide formation mechanisms in laminar opposed-flow diffusion flames , 1991 .

[6]  David E. Keyes,et al.  Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames , 1986 .

[7]  S. K. Liew,et al.  Flamelet models of turbulent non-premixed combustion , 1981 .

[8]  N. Peters Laminar flamelet concepts in turbulent combustion , 1988 .

[9]  K. Smyth,et al.  Detection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy , 1985 .

[10]  B. Rogg,et al.  Turbulent non-premixed combustion in partially premixed diffusion flamelets with detailed chemistry , 1988 .

[11]  T. S. Norton,et al.  Laser-Induced Fluorescence of CH · in a Laminar CH4/Air Diffusion Flame: Implications for Diagnostic Measurements and Analysis of Chemical Rates , 1991 .

[12]  David E. Keyes,et al.  A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Methane-Air Diffusion Flame , 1987 .

[13]  James A. Miller,et al.  Mechanism and modeling of nitrogen chemistry in combustion , 1989 .

[14]  R. Farrow,et al.  Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame. , 1982, Applied optics.

[15]  F. Behrendt,et al.  Cars measurements and computations of the structure of laminar stagnation-point methane-air counterflow diffusion flames , 1988 .

[16]  Robert J. Santoro,et al.  Soot inception in a methane/air diffusion flame as characterized by detailed species profiles , 1985 .

[17]  P. Lin,et al.  Computational and experimental study of a laminar axisymmetric methane-air diffusion flame , 1991 .

[18]  J. Bittner A molecular beam mass spectrometer study of fuel-rich and sooting benzene-oxygen flames , 1981 .

[19]  Robert W. Bilger,et al.  Reaction rates in diffusion flames , 1977 .

[20]  D. Haworth,et al.  Stretched laminar flamelet modeling of a turbulent jet diffusion flame , 1988 .

[21]  Mitchell D. Smooke,et al.  Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume , 1991 .

[22]  K. Smyth,et al.  Signal detection efficiency in multiphoton ionization flame measurements. , 1990, Applied optics.

[23]  R L Byer,et al.  Beam-deflection optical tomography of a flame. , 1987, Optics letters.

[24]  H. Jander,et al.  Soot formation in a laminar diffusion flame , 1981 .

[25]  S. K. Liew,et al.  A stretched laminar flamelet model of turbulent nonpremixed combustion , 1984 .

[26]  Ronald K. Hanson,et al.  CO and Temperature Measurements in a Flat Flame by Laser Ab orption Spectroscopy and Probe Techniques , 1980 .

[27]  F. Behrendt,et al.  Two-Dimensional Laser Diagnostics and Modeling of Counterflow Diffusion Flames , 1991 .

[28]  Anthony P. Hamins,et al.  Concentration measurements of OH· and equilibrium analysis in a laminar methane-air diffusion flame , 1990 .

[29]  J. Moss,et al.  Structure in methane-oxygen diffusion flames , 1975 .

[30]  Robert W. Bilger,et al.  The structure of turbulent nonpremixed flames , 1989 .

[31]  H. Miller,et al.  Methyl Radical Concentrations and Production Rates in a Faminar Methane/Air Diffusion Flame , 1987 .

[32]  C. P. Lazzara,et al.  An examination of the partial equilibration hypothesis and radical recombination in 1/20 atm methane flames , 1977 .

[33]  Kermit C. Smyth,et al.  Relative H-atom and O-atom concentration measurements in a laminar, methane/air diffusion flame , 1991 .

[34]  B. Ahvazi,et al.  Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame. , 1993, Applied optics.

[35]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[36]  G. Faeth,et al.  Generalized state relationships for scalar properties in nonpremixed hydrocarbon/air flames , 1990 .

[37]  H. F. Calcote,et al.  Are ions important in soot formation , 1988 .

[38]  David T. Anderson,et al.  Mechanistic studies of toluene destruction in diffusion flames , 1990 .

[39]  Norbert Peters,et al.  Reduced reaction schemes for methane, methanol and propane flames , 1988 .

[40]  K. Smyth,et al.  Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO , 1989 .

[41]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[42]  J. B. Moss,et al.  Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames , 1991 .

[43]  Michael Frenklach,et al.  Detailed reduction of reaction mechanisms for flame modeling , 1991 .

[44]  Delfau Jean-Louis,et al.  Mechanism of Soot Formation in Premixed C2/H2/O2 Flames , 1984 .

[45]  Phillip R. Westmoreland,et al.  Tests of published mechanisms by comparison with measured laminar flame structure in fuel-rich acetylene combustion , 1988 .

[46]  R. Barlow,et al.  Piloted diffusion flames of nitrogen-diluted methane near extinction: OH measurements , 1991 .

[47]  Robert J. Kee,et al.  On reduced mechanisms for methaneair combustion in nonpremixed flames , 1990 .

[48]  Forman A. Williams,et al.  Structure of Laminar Coflow Methane–Air Diffusion Flames , 1986 .

[49]  Robert J. Kee,et al.  The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism , 1987 .