In search of the determinants of European asset market comovements

We show, in a broad class of affine general equilibrium models with long-run risk, that the covariances between asset returns are linear functions of risk factors. We use a dynamic conditional correlation model to measure the covariances of stock and sovereign bond markets in the Euro Area. We use a new approach to measure risk factors based on Google search data. The factors explain 50 to 60% of the variation of the covariances between European stocks and 25 to 35% of the covariances between European bonds. The information improves the portfolio performance compared to an equally weighted portfolio.

[1]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[2]  Andrea Beltratti,et al.  Stock Prices and Bond Yields: Can Their Comovements Be Explained in Terms of Present Value Models? , 1992 .

[3]  Jun Pan,et al.  Transform Analysis and Asset Pricing for AÆne Jump-Di usions , 1999 .

[4]  General Equilibrium Models , 1999 .

[5]  Andrew Ang,et al.  International Asset Allocation With Regime Shifts , 2002 .

[6]  H. Varian,et al.  Predicting the Present with Google Trends , 2009 .

[7]  Dana Kiku,et al.  Long Run Risks, the Macroeconomy, and Asset Prices , 2010 .

[8]  Ric Colacito,et al.  International Asset Pricing with Recursive Preferences , 2012 .

[9]  E. Brynjolfsson,et al.  The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales , 2013, ICIS 2013.

[10]  N. Askitas,et al.  Google Econometrics and Unemployment Forecasting , 2009, SSRN Electronic Journal.

[11]  Axel H. Kind,et al.  Financial Valuation and Risk Management Working Paper No . 315 International Stock-Bond Correlations in a Simple Affine Asset Pricing Model , 2006 .

[12]  Geert Bekaert,et al.  The Determinants of Stock and Bond Return Comovements , 2007 .

[13]  Auke Plantinga,et al.  The Dutch triangle - A framework to measure upside potential relative to downside risk. , 1999 .

[14]  Yan Carrière-Swallow,et al.  Nowcasting With Google Trends in an Emerging Market , 2013 .

[15]  Sofia Ramos,et al.  Predictability of stock market activity using Google search queries , 2013 .

[16]  A. Taamouti,et al.  Portfolio selection in a data-rich environment , 2013 .

[17]  Juri Marcucci,et al.  'Google It!' Forecasting the US Unemployment Rate with A Google Job Search Index , 2010 .

[18]  Eric Ghysels,et al.  Stock Market Volatility and Macroeconomic Fundamentals , 2013, Review of Economics and Statistics.

[19]  A. Taamouti,et al.  Risk Premium, Variance Premium and the Maturity Structure of Uncertainty , 2012 .

[20]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[21]  Aristeidis Samitas,et al.  Financial Market Dynamics in an Enlarged European Union , 2009 .

[22]  H. Varian,et al.  Predicting the Present with Google Trends , 2012 .

[23]  Tanya Suhoy,et al.  Query Indices and a 2008 Downturn: Israeli Data , 2009 .

[24]  Riccardo Colacito,et al.  International Asset Pricing with Recursive Preferences: International Asset Pricing with Recursive Preferences , 2013 .

[25]  Bruno Feunou,et al.  Série Scientifique Scientific Series 2009 s-32 Option Valuation with Conditional Heteroskedasticity and Non-Normality , 2009 .

[26]  Alain Monfort,et al.  Econometric specification of stochastic discount factor models , 2007 .

[27]  Frank T. Magiera,et al.  Macroeconomic Factors Do Influence Aggregate Stock Returns , 2002 .

[28]  F. Longin,et al.  Is the Correlation in International Equity Returns Constant: 1960-90? , 1995 .

[29]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[30]  Torsten Schmidt,et al.  Forecasting Private Consumption: Survey-Based Indicators vs. Google Trends , 2009 .

[31]  Delroy M. Hunter,et al.  A Conditional Assessment of the Relationships between the Major World Bond Markets , 2003 .

[32]  Nicolás Della Penna,et al.  Constructing Consumer Sentiment Index for U.S. Using Google Searches , 2010 .

[33]  Konstantin A. Kholodilin,et al.  Do Google Searches Help in Nowcasting Private Consumption? A Real-Time Evidence for the US , 2010 .

[34]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[35]  Giselle C. Guzman,et al.  Internet Search Behavior as an Economic Forecasting Tool: The Case of Inflation Expectations , 2011 .

[36]  Rachana Shanbhogue,et al.  Using Internet Search Data as Economic Indicators , 2011 .

[37]  Pedro Santa-Clara,et al.  Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns , 2004 .

[38]  Pedro Santa-Clara,et al.  Anderson Graduate School of Management – Finance Uc Los Angeles Title: Dynamic Portfolio Selection by Augmenting the Asset Space Dynamic Portfolio Selection by Augmenting the Asset Space * , 2022 .

[39]  G. M. Furstenberg,et al.  International Stock Price Movements: Links and Messages , 1989 .

[40]  M. Flannery,et al.  Macroeconomic Factors Do Influence Aggregate Stock Returns , 2002 .

[41]  René M. Stulz,et al.  Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements , 1996 .

[42]  An Analysis of the Relationship between International Bond Markets , 2000 .

[43]  Jesper Rangvid Output and expected returns , 2006 .

[44]  Luca Benzoni,et al.  Portfolio Choice Over the Life-Cycle when the Stock and Labor Markets are Cointegrated , 2007 .

[45]  Robin L. Lumsdaine,et al.  Macroeconomic News and Bond Market Volatility , 1998 .

[46]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[47]  Jianping Mei,et al.  Measuring International Economic Linkages with Stock Market Data , 1996 .

[48]  Ravi Bansal,et al.  Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles , 2000 .

[49]  Auke Plantinga,et al.  The Dutch Triangle , 1999 .

[50]  John Y. Campbell,et al.  What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns , 1991 .

[51]  R. Colacito,et al.  The Short- and Long-Run Benefits of Financial Integration , 2010 .

[52]  Luis M. Viceira,et al.  Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds , 2009 .

[53]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[54]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[55]  Yann Le Fur,et al.  International Market Correlation and Volatility , 1996 .

[56]  Zhi Da,et al.  In Search of Attention , 2009 .

[57]  Hyun-young Choi,et al.  Predicting Initial Claims for Unemployment Benefits , 2009 .

[58]  Sydney C. Ludvigson,et al.  Macro Factors in Bond Risk Premia , 2005 .

[59]  Stock returns and inflation risk: economic versus statistical evidence , 2013 .

[60]  M. Flannery,et al.  Macroeconomic FactorsDoInfluence Aggregate Stock Returns , 2002 .

[61]  Affine General Equilibrium Models , 2008 .

[62]  Ravi Bansal Long-Run Risks and Financial Markets , 2007 .

[63]  D'Amuri Francesco,et al.  Predicting unemployment in short samples with internet job search query data , 2009 .

[64]  Simone Farinelli,et al.  Sharpe thinking in asset ranking with one-sided measures , 2008, Eur. J. Oper. Res..

[65]  Jeremy Ginsberg,et al.  Detecting influenza epidemics using search engine query data , 2009, Nature.