Linked exploratory visualizations for uncertain MR spectroscopy data

We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations.

[1]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[2]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[3]  Helwig Hauser,et al.  Angular brushing of extended parallel coordinates , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[4]  M. Law,et al.  Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. , 2009, Clinical radiology.

[5]  Margie Hunt,et al.  Image-fusion of MR spectroscopic images for treatment planning of gliomas. , 2005 .

[6]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[7]  M. E. McGill,et al.  Dynamic Graphics for Statistics. , 1990 .

[8]  Robert van Liere,et al.  Transfer Functions for Imaging Spectroscopy Data using Principal Component Analysis , 2005, EuroVis.

[9]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[10]  Rida E. Moustafa,et al.  Multivariate Continuous Data — Parallel Coordinates , 2006 .

[11]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[12]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[13]  Lydia Ng,et al.  Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain , 2008, BMC Bioinformatics.

[14]  Alain Crouzil,et al.  A new correlation criterion based on gradient fields similarity , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[15]  L O Hall,et al.  Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging , 2006, NMR in biomedicine.

[16]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[17]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[18]  Bernice E. Rogowitz,et al.  WEAVE: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data , 2000 .

[19]  Penny Rheingans Color, change, and control of quantitative data display , 1992, Proceedings Visualization '92.

[20]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[21]  Russell M. Taylor,et al.  Visualizing intersecting surfaces with nested-surface techniques , 2005 .

[22]  David S. Ebert,et al.  Procedural Shape Generation for Multi-dimensional Data Visualization , 1999, VisSym.

[23]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[24]  Tim W. Nattkemper,et al.  Multivariate image analysis in biomedicine , 2004, J. Biomed. Informatics.

[25]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[26]  Victoria Interrante,et al.  Conveying the 3D Shape of Smoothly Curving Transparent Surfaces via Texture , 1997, IEEE Trans. Vis. Comput. Graph..

[27]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[28]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[29]  Duncan Temple Lang,et al.  GGobi: evolving from XGobi into an extensible framework for interactive data visualization , 2003, Comput. Stat. Data Anal..

[30]  Kwan-Liu Ma,et al.  Multiple Uncertainties in Time-Variant Cosmological Particle Data , 2008, 2008 IEEE Pacific Visualization Symposium.

[31]  Thomas Ertl,et al.  GPU-based Multi-Volume Rendering for the Visualization of Functional Brain Images , 2006, SimVis.

[32]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Frederick P. Brooks,et al.  Multivariate data visualization with data-driven spots , 2003 .

[34]  Hiroshi Akibay,et al.  A tri-space visualization interface for analyzing time-varying multivariate volume data , 2007 .