Variation in fatty acid content among benthic invertebrates in a seasonally driven system

[1]  I. Creed,et al.  Lowered nutritional quality of plankton caused by global environmental changes , 2021, Global change biology.

[2]  S. Taipale,et al.  Nutritional quality of littoral macroinvertebrates and pelagic zooplankton in subarctic lakes , 2020, Limnology and Oceanography.

[3]  A. W. Galloway,et al.  Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates , 2020, Philosophical Transactions of the Royal Society B.

[4]  Ó. Monroig,et al.  Unique fatty acid desaturase capacities uncovered in Hediste diversicolor illustrate the roles of aquatic invertebrates in trophic upgrading , 2020, Philosophical Transactions of the Royal Society B.

[5]  T. Smyth,et al.  Increasing picocyanobacteria success in shelf waters contributes to long‐term food web degradation , 2020, Global change biology.

[6]  P. Lucena-Moya,et al.  Seasonal Variability in Benthic–Pelagic Coupling: Quantifying Organic Matter Inputs to the Seafloor and Benthic Macrofauna Using a Multi-Marker Approach , 2020, Frontiers in Marine Science.

[7]  O. Hjerne,et al.  Climate Driven Changes in Timing, Composition and Magnitude of the Baltic Sea Phytoplankton Spring Bloom , 2019, Front. Mar. Sci..

[8]  G. Lessin,et al.  Time Scales of Benthic Macrofaunal Response to Pelagic Production Differ Between Major Feeding Groups , 2019, Front. Mar. Sci..

[9]  Ó. Monroig,et al.  Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals , 2018, Science Advances.

[10]  K. Spilling,et al.  Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections , 2017, Ambio.

[11]  S. Niiranen,et al.  The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world , 2017, Global change biology.

[12]  Tiit Kutser,et al.  Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea , 2017, PloS one.

[13]  E. Peltomaa,et al.  Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. , 2016, Environment international.

[14]  M. Aschan,et al.  Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists , 2015, Proceedings of the Royal Society B: Biological Sciences.

[15]  M. Winder,et al.  Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids , 2015, PloS one.

[16]  R. Elmgren,et al.  Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system , 2015, Scientific Reports.

[17]  M. Brett,et al.  A low ω-3:ω-6 ratio in Daphnia indicates terrestrial resource utilization and poor nutritional condition , 2015 .

[18]  B. McMeans,et al.  Effects of seasonal seston and temperature changes on lake zooplankton fatty acids , 2015 .

[19]  A. Kremp,et al.  Spring bloom community change modifies carbon pathways and C : N : P : Chl a stoichiometry of coastal material fluxes , 2014 .

[20]  J. Pickova,et al.  Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes. , 2014, Ecology.

[21]  M. Kuypers,et al.  Nitrogen isotope effects induced by anammox bacteria , 2013, Proceedings of the National Academy of Sciences.

[22]  S. Forster,et al.  Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea , 2013 .

[23]  Ó. Monroig,et al.  Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms , 2013, Marine drugs.

[24]  B. Hansen,et al.  Fatty acid transformation in zooplankton: from seston to benthos. , 2012 .

[25]  Monika Winder,et al.  The annual cycles of phytoplankton biomass , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  E. Lahdes,et al.  Phospholipid characteristics and neutral lipid fatty acid composition related to temperature and nutritional conditions in ecologically important amphipod species from the northern Baltic Sea , 2010 .

[27]  A. Huryn,et al.  Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems , 2010, Journal of the North American Benthological Society.

[28]  Lisa M. Clough,et al.  Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis) to phytoplankton and ice algae: Will climate change impacts be species specific? , 2009 .

[29]  U. Janas,et al.  Fitness and chemical composition of the Baltic clam Macoma balthica (Linnaeus, 1758) from sulphidic habitats in the Gulf of Gda´ , 2007 .

[30]  J. Lovvorn,et al.  Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea , 2005 .

[31]  A. Bick,et al.  Revision of Marenzelleria Mesnil, 1896 (Spionidae, Polychaeta) , 2004 .

[32]  R. Elmgren,et al.  Effects of the coexisting Baltic amphipods Monoporeia affinis and Pontoporeia femorata on the fate of a simulated spring diatom bloom , 2001 .

[33]  G. Ahlgren,et al.  Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. , 2000 .

[34]  Stefan Schouten,et al.  Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids , 1999 .

[35]  A. Andersin,et al.  Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea , 1998 .

[36]  Michael T. Brett,et al.  The role of highly unsaturated fatty acids in aquatic foodweb processes , 1997 .

[37]  K. Lehtonen Ecophysiology of the benthic amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea: seasonal variations in body composition, with bioenergetic considerations , 1996 .

[38]  C. Hill,et al.  Seasonal changes in lipid content and composition in the benthic amphipods Monoporeia affinis and Pontoporeia femorata , 1992 .

[39]  R. Elmgren,et al.  Vertical distribution in the sediment in the co-occurring benthic amphipods Pontoporeia affinis and P. femorata , 1987 .

[40]  D. Dauer,et al.  Feeding behavior and general ecology of several spionid polychaetes from the Chesapeake Bay , 1981 .

[41]  P. W. Hochachka,et al.  Animal Life Without Oxygen: Basic Biochemical Mechanisms , 1973 .

[42]  OUP accepted manuscript , 2022, ICES Journal of Marine Science.

[43]  A. Norkko,et al.  Seasonal population dynamics of the invasive polychaete genus Marenzelleria spp. in contrasting soft-sediment habitats , 2018 .

[44]  J. Pickova,et al.  Fatty acid composition of consumers in boreal lakes – variation across species, space and time , 2012 .

[45]  G. Arhonditsis,et al.  The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. , 2010, Ecology.

[46]  D. Dauer Functional morphology and feeding behavior of Spio setosa (Polychaeta: Spionidae) , 2000 .

[47]  R. Wenne,et al.  Lipid composition and storage in the tissues of the bivalve, Macoma balthica , 1989 .