Closed-shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions.

We explore different variants of the random phase approximation to the correlation energy derived from closed-shell ring-diagram approximations to coupled cluster doubles theory. We implement these variants in range-separated density-functional theory, i.e., by combining the long-range random phase approximations with short-range density-functional approximations. We perform tests on the rare-gas dimers He(2), Ne(2), and Ar(2), and on the weakly interacting molecular complexes of the S22 set of Jurečka et al. [P. Jurečka, J. Šponer, J. Černý, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The two best variants correspond to the ones originally proposed by Szabo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)]. With range separation, they reach mean absolute errors on the equilibrium interaction energies of the S22 set of about 0.4 kcal/mol, corresponding to mean absolute percentage errors of about 4%, with the aug-cc-pVDZ basis set.

[1]  A. Szabó,et al.  Interaction energies between closed‐shell systems: The correlation energy in the random phase approximation , 2009 .

[2]  Julia E. Rice,et al.  An efficient closed-shell singles and doubles coupled-cluster method , 1988 .

[3]  Andreas Savin,et al.  Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation. , 2008, Physical review letters.

[4]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[5]  Adrienn Ruzsinszky,et al.  The RPA Atomization Energy Puzzle. , 2010, Journal of chemical theory and computation.

[6]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[7]  Julian Yarkony,et al.  Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. , 2010, The Journal of chemical physics.

[8]  E. A. Sanderson,et al.  Nuclear ground states in the random phase approximation , 1965 .

[9]  X. Gonze,et al.  Band-gap energy in the random-phase approximation to density-functional theory , 2004 .

[10]  W. Klopper Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques , 2001 .

[11]  Yan Li,et al.  Ab initio calculation of van der Waals bonded molecular crystals. , 2009, Physical review letters.

[12]  A. Hesselmann Third-order corrections to random-phase approximation correlation energies. , 2011, The Journal of chemical physics.

[13]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[14]  Andreas Görling,et al.  Random phase approximation correlation energies with exact Kohn–Sham exchange , 2010 .

[15]  Robert van Leeuwen,et al.  Variational energy functionals of the Green function and of the density tested on molecules , 2006 .

[16]  Thomas M Henderson,et al.  Long-range-corrected hybrids including random phase approximation correlation. , 2009, The Journal of chemical physics.

[17]  Benjamin G. Janesko,et al.  The role of the reference state in long-range random phase approximation correlation. , 2009, The Journal of chemical physics.

[18]  M. Ratner Molecular electronic-structure theory , 2000 .

[19]  F. Manby,et al.  Local and density fitting approximations within the short-range/long-range hybrid scheme: application to large non-bonded complexes. , 2008, Physical chemistry chemical physics : PCCP.

[20]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  R. Bartlett,et al.  External coupled-cluster perturbation theory: description and application to weakly interaction dimers. Corrections to the random phase approximation. , 2011, The Journal of chemical physics.

[23]  K. Burke,et al.  Describing static correlation in bond dissociation by Kohn-Sham density functional theory. , 2004, The Journal of chemical physics.

[24]  Bradley P. Dinte,et al.  Soft cohesive forces , 2005 .

[25]  Georg Kresse,et al.  Making the random phase approximation to electronic correlation accurate. , 2009, The Journal of chemical physics.

[26]  Xavier Gonze,et al.  Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem , 2002 .

[27]  John P. Perdew,et al.  Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes , 2000 .

[28]  J. Gauss,et al.  Closed-shell coupled-cluster theory with spin-orbit coupling. , 2008, The Journal of chemical physics.

[29]  D. Freeman Coupled-cluster expansion applied to the electron gas: Inclusion of ring and exchange effects , 1977 .

[30]  Kiyoyuki Terakura,et al.  Total energy method from many-body formulation. , 2002, Physical review letters.

[31]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[32]  A. Görling,et al.  Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional. , 2011, Physical review letters.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  M. Karplus,et al.  The self-consistent random phase approximation , 1971 .

[35]  Georg Kresse,et al.  Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids , 2010 .

[36]  Benjamin G. Janesko,et al.  Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions. , 2009, The Journal of chemical physics.

[37]  Matthias Scheffler,et al.  Exploring the random phase approximation: Application to CO adsorbed on Cu(111) , 2009 .

[38]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[39]  Huy V. Nguyen,et al.  A first-principles study of weakly bound molecules using exact exchange and the random phase approximation. , 2010, The Journal of chemical physics.

[40]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[41]  V. McKoy,et al.  HIGHER RANDOM-PHASE APPROXIMATION AS AN APPROXIMATION TO THE EQUATIONS OF MOTION. , 1970 .

[42]  A. Savin,et al.  Range-separated density-functional theory with the random-phase approximation: Detailed formalism and illustrative applications , 2010, 1006.2061.

[43]  M. Hellgren,et al.  Correlation energy functional and potential from time-dependent exact-exchange theory. , 2009, The Journal of chemical physics.

[44]  V. McKoy,et al.  Application of the RPA and Higher RPA to the V and T States of Ethylene , 1971 .

[45]  Bradley P. Dinte,et al.  Prediction of Dispersion Forces: Is There a Problem? , 2001 .

[46]  P. Gori-Giorgi,et al.  A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers , 2006 .

[47]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[48]  W. Marsden I and J , 2012 .

[49]  E. Engel,et al.  Random-phase-approximation-based correlation energy functionals: benchmark results for atoms. , 2007, The Journal of chemical physics.

[50]  J. Perdew,et al.  A simple but fully nonlocal correction to the random phase approximation. , 2011, The Journal of chemical physics.

[51]  Trygve Helgaker,et al.  Spin flipping in ring-coupled-cluster-doubles theory , 2011 .

[52]  Georg Kresse,et al.  Hybrid functionals including random phase approximation correlation and second-order screened exchange. , 2010, The Journal of chemical physics.

[53]  Thomas M Henderson,et al.  The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. , 2008, The Journal of chemical physics.

[54]  S. Ismail‐Beigi Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges , 2010, 1002.2589.

[55]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[56]  F. Furche Developing the random phase approximation into a practical post-Kohn-Sham correlation model. , 2008, The Journal of chemical physics.

[57]  Validity Comparison Between Asymptotic Dispersion Energy Formalisms for Nanomaterials , 2009 .

[58]  János G. Ángyán,et al.  Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach. , 2011, Journal of chemical theory and computation.

[59]  T. Van Voorhis,et al.  Fluctuation-dissipation theorem density-functional theory. , 2005, The Journal of chemical physics.

[60]  Andreas Savin,et al.  Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions. , 2014, The Journal of chemical physics.

[61]  J. Ángyán,et al.  On the equivalence of ring-coupled cluster and adiabatic connection fluctuation-dissipation theorem random phase approximation correlation energy expressions. , 2010, The Journal of chemical physics.

[62]  Filipp Furche,et al.  Molecular tests of the random phase approximation to the exchange-correlation energy functional , 2001 .

[63]  Angel Rubio,et al.  First-principles description of correlation effects in layered materials. , 2006, Physical review letters.

[64]  Kiyoyuki Terakura,et al.  Total energy of solids: An exchange and random-phase approximation correlation study , 2002 .

[65]  Jens Oddershede,et al.  Polarization Propagator Calculations , 1978 .

[66]  Giulia Galli,et al.  Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions. , 2010, The Journal of chemical physics.

[67]  Alexandre Tkatchenko,et al.  Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. , 2010, Physical review letters.

[68]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems. V. Spin‐adapted coupled cluster many‐electron theory , 1977 .

[69]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[70]  A. D. McLACHLAN,et al.  Time-Dependent Hartree—Fock Theory for Molecules , 1964 .

[71]  K. Sawada,et al.  LINEARIZED MANY-BODY PROBLEM , 1964 .

[72]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[73]  Neil S. Ostlund,et al.  The correlation energy in the random phase approximation: Intermolecular forces between closed‐shell systems , 1977 .

[74]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[75]  Stefano de Gironcoli,et al.  Efficient calculation of exact exchange and RPA correlation energies in the adiabatic-connection fluctuation-dissipation theory , 2009, 0902.0889.