The Genetics of Transcription Factor DNA Binding Variation

[1]  Jaie C. Woodard,et al.  Survey of variation in human transcription factors reveals prevalent DNA binding changes , 2016, Science.

[2]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[3]  V. Hatzimanikatis,et al.  Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models* , 2016, The Journal of Biological Chemistry.

[4]  Rui Chen,et al.  FAS rs2234767 and rs1800682 polymorphisms jointly contributed to risk of colorectal cancer by affecting SP1/STAT1 complex recruitment to chromatin , 2016, Scientific Reports.

[5]  Patrick F. Sullivan,et al.  High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction , 2015, Genome Biology.

[6]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[7]  Anaïs F. Bardet,et al.  Competition between DNA methylation and transcription factors determines binding of NRF1 , 2015, Nature.

[8]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[9]  Vladimir B. Bajic,et al.  HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models , 2015, Nucleic Acids Res..

[10]  A. Jolma,et al.  DNA-dependent formation of transcription factor pairs alters their binding specificity , 2015, Nature.

[11]  Chandler Zuo,et al.  atSNP: transcription factor binding affinity testing for regulatory SNP detection , 2015, Bioinform..

[12]  Eric Haugen,et al.  Large-scale identification of sequence variants impacting human transcription factor occupancy in vivo , 2015, Nature Genetics.

[13]  Timothy E. Reddy,et al.  Genomic approaches for understanding the genetics of complex disease , 2015, Genome research.

[14]  E. Mancini,et al.  How to Be a Pioneer: A One-Sided View. , 2015, Trends in biochemical sciences.

[15]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[16]  Manolis Kellis,et al.  FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. , 2015, The New England journal of medicine.

[17]  R. Rohs,et al.  A widespread role of the motif environment in transcription factor binding across diverse protein families , 2015, Genome research.

[18]  O. Delaneau,et al.  Population Variation and Genetic Control of Modular Chromatin Architecture in Humans , 2015, Cell.

[19]  Judith B. Zaugg,et al.  Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions , 2015, Cell.

[20]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[21]  Simon G. Coetzee,et al.  motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites , 2015, Bioinform..

[22]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[23]  Junbai Wang,et al.  BayesPI-BAR: a new biophysical model for characterization of regulatory sequence variations , 2015, Nucleic acids research.

[24]  David K. Gifford,et al.  GERV: A Statistical Method for Generative Evaluation of Regulatory Variants for Transcription Factor Binding , 2015, bioRxiv.

[25]  Kyoung-Jae Won,et al.  Genetic Variation Determines PPARγ Function and Anti-diabetic Drug Response In Vivo , 2015, Cell.

[26]  Laura J. Norton,et al.  Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin , 2015, Nature Communications.

[27]  Benjamin J. Strober,et al.  A method to predict the impact of regulatory variants from DNA sequence , 2015, Nature Genetics.

[28]  M. Pellegrini,et al.  Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming , 2015, Cell.

[29]  Jianhua Ruan,et al.  A structure-based Multiple-Instance Learning approach to predicting in vitro transcription factor-DNA interaction , 2015, BMC Genomics.

[30]  R. Mann,et al.  Quantitative modeling of transcription factor binding specificities using DNA shape , 2015, Proceedings of the National Academy of Sciences.

[31]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[32]  L. Kruglyak,et al.  The role of regulatory variation in complex traits and disease , 2015, Nature Reviews Genetics.

[33]  Mihai Albu,et al.  C2H2 zinc finger proteins greatly expand the human regulatory lexicon , 2015, Nature Biotechnology.

[34]  Jing Liang,et al.  Chromatin architecture reorganization during stem cell differentiation , 2015, Nature.

[35]  Giacomo Cavalli,et al.  Chromatin-driven behavior of topologically associating domains. , 2015, Journal of molecular biology.

[36]  D. Zheng,et al.  Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice , 2015, Nature.

[37]  C. Gieger,et al.  Nutrition, sirtuins and renin-angiotensin system: Cross talk in metabolic regulation , 2015 .

[38]  J. Stender,et al.  Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities , 2015, Cell.

[39]  Jonathan K. Pritchard,et al.  The Genetic and Mechanistic Basis for Variation in Gene Regulation , 2015, PLoS genetics.

[40]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[41]  Makiko Iwafuchi‐Doi,et al.  Pioneer transcription factors in cell reprogramming , 2014, Genes & development.

[42]  Adan Valladares-Salgado,et al.  Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. , 2014, American journal of human genetics.

[43]  Sander W. Timmer,et al.  Quantitative Genetics of CTCF Binding Reveal Local Sequence Effects and Different Modes of X-Chromosome Association , 2014, PLoS genetics.

[44]  R. Young,et al.  An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element , 2014, Science.

[45]  Jill M Dowen,et al.  Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes , 2014, Cell.

[46]  C. Sander,et al.  Genome-wide analysis of non-coding regulatory mutations in cancer , 2014, Nature Genetics.

[47]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[48]  Matthew Slattery,et al.  Absence of a simple code: how transcription factors read the genome. , 2014, Trends in biochemical sciences.

[49]  R. Gibbs,et al.  Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines , 2014, Genome research.

[50]  Adelina Rogowska-Wrzesinska,et al.  Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. , 2014, Cell reports.

[51]  John D. Blischak,et al.  Methylation QTLs Are Associated with Coordinated Changes in Transcription Factor Binding, Histone Modifications, and Gene Expression Levels , 2014, bioRxiv.

[52]  E. Segal,et al.  In pursuit of design principles of regulatory sequences , 2014, Nature Reviews Genetics.

[53]  Lin Yang,et al.  Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. , 2014, Molecular cell.

[54]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[55]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[56]  M. Ruíz-Ferrer,et al.  An Impairment of Long Distance SOX10 Regulatory Elements Underlies Isolated Hirschsprung Disease , 2014, Human mutation.

[57]  Christian Fuchsberger,et al.  A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. , 2014, American journal of human genetics.

[58]  Tatsunori B. Hashimoto,et al.  Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape , 2014, Nature Biotechnology.

[59]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[60]  Denis Paquette,et al.  Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs , 2013, PLoS genetics.

[61]  Anna Murray,et al.  Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis , 2013, Nature Genetics.

[62]  Leighton J. Core,et al.  Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription , 2013, Science.

[63]  Jonathan K. Pritchard,et al.  Identification of Genetic Variants That Affect Histone Modifications in Human Cells , 2013, Science.

[64]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[65]  Jonathan K. Pritchard,et al.  The Functional Consequences of Variation in Transcription Factor Binding , 2013, PLoS genetics.

[66]  C. Glass,et al.  Impact of natural genetic variation on enhancer selection and function , 2013, Nature.

[67]  Michelle R. Campbell,et al.  A Polymorphic p53 Response Element in KIT Ligand Influences Cancer Risk and Has Undergone Natural Selection , 2013, Cell.

[68]  Dan Xie,et al.  Extensive Variation in Chromatin States Across Humans , 2013, Science.

[69]  J. Qian,et al.  DNA methylation presents distinct binding sites for human transcription factors , 2013, eLife.

[70]  T. Marquès-Bonet,et al.  DNA methylation contributes to natural human variation , 2013, Genome research.

[71]  Michael D. Wilson,et al.  Cooperativity and Rapid Evolution of Cobound Transcription Factors in Closely Related Mammals , 2013, Cell.

[72]  Yun Zhu,et al.  The pluripotent genome in three dimensions is shaped around pluripotency factors , 2013, Nature.

[73]  Teri A. Manolio,et al.  Bringing genome-wide association findings into clinical use , 2013, Nature Reviews Genetics.

[74]  B. Cohen,et al.  Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks , 2013, Proceedings of the National Academy of Sciences.

[75]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[76]  E. Dermitzakis,et al.  Passive and active DNA methylation and the interplay with genetic variation in gene regulation , 2013, eLife.

[77]  Frédérique Lisacek,et al.  Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics , 2013, Nature Methods.

[78]  Wei Lu,et al.  Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. , 2013, American journal of human genetics.

[79]  Michael D. Wilson,et al.  A CpG mutational hotspot in a ONECUT binding site accounts for the prevalent variant of hemophilia B Leyden. , 2013, American journal of human genetics.

[80]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[81]  Ben Lehner Genotype to phenotype: lessons from model organisms for human genetics , 2013, Nature Reviews Genetics.

[82]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[83]  Zhaoyu Li,et al.  Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation , 2012, Cell.

[84]  Sebastian M. Waszak,et al.  Genomic Variation and Its Impact on Gene Expression in Drosophila melanogaster , 2012, PLoS genetics.

[85]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[86]  Gautier Koscielny,et al.  Analysis of variation at transcription factor binding sites in Drosophila and humans , 2012, Genome Biology.

[87]  John Loughlin,et al.  A rare variant in the osteoarthritis-associated locus GDF5 is functional and reveals a site that can be manipulated to modulate GDF5 expression , 2012, European Journal of Human Genetics.

[88]  Fangping Mu,et al.  Improved predictions of transcription factor binding sites using physicochemical features of DNA , 2012, Nucleic acids research.

[89]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[90]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[91]  G. Crabtree,et al.  Dynamics and Memory of Heterochromatin in Living Cells , 2012, Cell.

[92]  A. Riva Large-scale computational identification of regulatory SNPs with rSNP-MAPPER , 2012, BMC Genomics.

[93]  Yadong Wang,et al.  regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions , 2012, Bioinform..

[94]  T. Mikkelsen,et al.  Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPβ and KAISO. , 2012, Molecular cell.

[95]  Timothy E. Reddy,et al.  Effects of sequence variation on differential allelic transcription factor occupancy and gene expression , 2012, Genome research.

[96]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[97]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[98]  E. Birney,et al.  A Transcription Factor Collective Defines Cardiac Cell Fate and Reflects Lineage History , 2012, Cell.

[99]  Joseph K. Pickrell,et al.  DNaseI sensitivity QTLs are a major determinant of human expression variation , 2011, Nature.

[100]  R. Krishnamoorthy,et al.  The β‐globin promoter −71 C>T mutation is a β+ thalassemic allele , 2011, European journal of haematology.

[101]  M. Biggin Animal transcription networks as highly connected, quantitative continua. , 2011, Developmental cell.

[102]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[103]  Thomas M. Keane,et al.  Sequence-based characterization of structural variation in the mouse genome , 2011, Nature.

[104]  R. Altman,et al.  Cooperative transcription factor associations discovered using regulatory variation , 2011, Proceedings of the National Academy of Sciences.

[105]  S. Luo,et al.  Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument , 2011, Nature Biotechnology.

[106]  P. Margaritis,et al.  Mutation in the factor VII hepatocyte nuclear factor 4&agr;-binding site contributes to factor VII deficiency , 2011, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[107]  G. Stormo,et al.  Determining the specificity of protein–DNA interactions , 2010, Nature Reviews Genetics.

[108]  Fangping Mu,et al.  Using Sequence-Specific Chemical and Structural Properties of DNA to Predict Transcription Factor Binding Sites , 2010, PLoS Comput. Biol..

[109]  James Bailey,et al.  is-rSNP: a novel technique for in silico regulatory SNP detection , 2010, BMC Bioinformatics.

[110]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[111]  Juan M. Vaquerizas,et al.  Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. , 2010, Genome research.

[112]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[113]  A. Visel,et al.  Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. , 2010, Genome research.

[114]  E. Dermitzakis,et al.  Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations , 2010, PLoS genetics.

[115]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[116]  M. Gerstein,et al.  Variation in Transcription Factor Binding Among Humans , 2010, Science.

[117]  M. Vingron,et al.  Quantifying the effect of sequence variation on regulatory interactions , 2010, Human mutation.

[118]  John A. Stamatoyannopoulos,et al.  Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene , 2010, Nucleic acids research.

[119]  Ariel S. Schwartz,et al.  An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man , 2010, Cell.

[120]  Joseph G Ibrahim,et al.  A Bayesian Hidden Markov Model for Motif Discovery Through Joint Modeling of Genomic Sequence and ChIP‐Chip Data , 2009, Biometrics.

[121]  Stephen R Quake,et al.  Experimental determination of the evolvability of a transcription factor , 2009, Proceedings of the National Academy of Sciences.

[122]  S. Blackshaw,et al.  Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling , 2009, Cell.

[123]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[124]  K. Dewar,et al.  Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. , 2009, American journal of human genetics.

[125]  P. Farnham Insights from genomic profiling of transcription factors , 2009, Nature Reviews Genetics.

[126]  E. Stone,et al.  The genetics of quantitative traits: challenges and prospects , 2009, Nature Reviews Genetics.

[127]  Esko Ukkonen,et al.  The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling , 2009, Nature Genetics.

[128]  D. Reich,et al.  Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus , 2009, PLoS genetics.

[129]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[130]  J. Komorowski,et al.  Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP , 2009, Nucleic acids research.

[131]  Jens C. Brüning,et al.  Inactivation of the Fto gene protects from obesity , 2009, Nature.

[132]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[133]  A. Munnich,et al.  Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence , 2009, Nature Genetics.

[134]  L. Mirny,et al.  Nucleosome-mediated cooperativity between transcription factors , 2009, Proceedings of the National Academy of Sciences.

[135]  Xia Li,et al.  Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein , 2008, Nature Genetics.

[136]  Axel Visel,et al.  Disruption of an AP-2α binding site in an IRF6 enhancer is strongly associated with cleft lip , 2008, Nature Genetics.

[137]  M. Stephens,et al.  High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation , 2008, PLoS genetics.

[138]  M. Levine,et al.  Shadow Enhancers as a Source of Evolutionary Novelty , 2008, Science.

[139]  Vincent J. Lynch,et al.  Resurrecting the Role of Transcription Factor Change in Developmental Evolution , 2008, Evolution; international journal of organic evolution.

[140]  W. Duan,et al.  Ets2 Maintains hTERT Gene Expression and Breast Cancer Cell Proliferation by Interacting with c-Myc* , 2008, Journal of Biological Chemistry.

[141]  Michelle R. Campbell,et al.  Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. , 2008, Mutation research.

[142]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[143]  David J. Arenillas,et al.  In Silico Detection of Sequence Variations Modifying Transcriptional Regulation , 2007, PLoS Comput. Biol..

[144]  Beverley Balkau,et al.  Variation in FTO contributes to childhood obesity and severe adult obesity , 2007, Nature Genetics.

[145]  M. Jarvelin,et al.  A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity , 2007, Science.

[146]  J. Coyne,et al.  THE LOCUS OF EVOLUTION: EVO DEVO AND THE GENETICS OF ADAPTATION , 2007, Evolution; international journal of organic evolution.

[147]  G. Wray The evolutionary significance of cis-regulatory mutations , 2007, Nature Reviews Genetics.

[148]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[149]  Leonor Saiz,et al.  DNA looping: the consequences and its control. , 2006, Current opinion in structural biology.

[150]  Vip Viprakasit,et al.  A Regulatory SNP Causes a Human Genetic Disease by Creating a New Transcriptional Promoter , 2006, Science.

[151]  M. Passos-Bueno,et al.  A functional SNP in the promoter region of TCOF1 is associated with reduced gene expression and YY1 DNA-protein interaction. , 2005, Gene.

[152]  M. Brodsky,et al.  A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors , 2005, Nature Biotechnology.

[153]  David N Arnosti,et al.  Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? , 2005, Journal of cellular biochemistry.

[154]  A. Sandelin,et al.  Applied bioinformatics for the identification of regulatory elements , 2004, Nature Reviews Genetics.

[155]  Terence P. Speed,et al.  Finding short DNA motifs using permuted markov models , 2004, RECOMB.

[156]  Jurg Ott,et al.  A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis , 2003, Nature Genetics.

[157]  Anirvan M. Sengupta,et al.  A biophysical approach to transcription factor binding site discovery. , 2003, Genome research.

[158]  G. Cooper,et al.  A Novel Polymorphic CAAT/Enhancer-Binding Protein β Element in the FasL Gene Promoter Alters Fas Ligand Expression: A Candidate Background Gene in African American Systemic Lupus Erythematosus Patients1 , 2003, The Journal of Immunology.

[159]  A. Brass,et al.  Crystal structure of PU.1/IRF-4/DNA ternary complex. , 2002, Molecular cell.

[160]  G. Church,et al.  Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. , 2002, Nucleic acids research.

[161]  Frank R. Lin,et al.  Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. , 2002, Molecular cell.

[162]  R. Desnick,et al.  Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. , 2001, The Journal of clinical investigation.

[163]  V. Máximo,et al.  A new PKLR gene mutation in the R‐type promoter region affects the gene transcription causing pyruvate kinase deficiency , 2000, British journal of haematology.

[164]  U. Rüther,et al.  Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation , 1999, Mammalian Genome.

[165]  M. Klinnert,et al.  Interleukin-10 and transforming growth factor-β promoter polymorphisms in allergies and asthma , 1998 .

[166]  S. Grant,et al.  Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I α 1 gene , 1996, Nature Genetics.

[167]  Elaine H. Zackai,et al.  Identification of a Mutation in a GATA Binding Site of the Platelet Glycoprotein Ibβ Promoter Resulting in the Bernard-Soulier Syndrome* , 1996, The Journal of Biological Chemistry.

[168]  J. Widom,et al.  A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. , 1996, Journal of molecular biology.

[169]  C. Tournamille,et al.  Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals , 1995, Nature Genetics.

[170]  S. Deeb,et al.  A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[171]  J. Bieker,et al.  A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins , 1993, Molecular and cellular biology.

[172]  M. Matsuda,et al.  Delta-thalassemia caused by disruption of the site for an erythroid-specific transcription factor, GATA-1, in the delta-globin gene promoter. , 1992, Blood.

[173]  M. Crossley,et al.  Recovery from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter. , 1992, Science.

[174]  P. Reitsma,et al.  Disruption of a binding site for hepatocyte nuclear factor 4 results in hemophilia B Leyden. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[175]  Silke Meyer,et al.  Compilation of vertebrate-encoded transcription factors , 1992, Nucleic Acids Res..

[176]  M. Crossley,et al.  Disruption of a C/EBP binding site in the factor IX promoter is associated with haemophilia B , 1990, Nature.

[177]  S. Orkin,et al.  Increased γ-globin expression in a nondeletion HPFH mediated by an erythroid-specif ic DNA-binding factor , 1989, Nature.

[178]  S. Surrey,et al.  beta-Thalassemia in a Kurdish Jew. Single base changes in the T-A-T-A box. , 1982, The Journal of biological chemistry.

[179]  S. Orkin,et al.  Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster , 1982, Nature.

[180]  A. Jeffrey,et al.  How the λ repressor and cro work , 1980, Cell.

[181]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[182]  R. T. Lie,et al.  Edinburgh Research Explorer Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip , 2018 .

[183]  J. Workman,et al.  Transcription-associated histone modifications and cryptic transcription. , 2013, Biochimica et biophysica acta.

[184]  T R Hughes,et al.  A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. , 2011, Sub-cellular biochemistry.

[185]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.

[186]  B. Ning,et al.  Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. , 2005, Gastroenterology.

[187]  Akinori Sarai,et al.  rSNP_Guide, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutations , 2001, Nucleic Acids Res..

[188]  S. Orkin,et al.  Increased gamma-globin expression in a nondeletion HPFH mediated by an erythroid-specific DNA-binding factor. , 1989, Nature.

[189]  S. Orkin,et al.  Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. , 1982, Nature.

[190]  Nicola K. Wilson,et al.  Edinburgh Research Explorer Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators , 2022 .

[191]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .