Approximate robust optimization of time-periodic stationary states with application to biochemical processes

In this paper we present techniques to optimize periodic stationary states of processes that depend on uncertain parameters. We start with an introduction to approximate robust counterpart formulations and specialize on systems with many uncertain parameters but only a small number of inequality constraints. The presented approximate robust programming formulation has an interesting application for stable time-periodic systems where the steady state is affected by uncertainties. In order to demonstrate this, we apply our techniques to a fermentation process optimal in a periodic operation. We discuss this optimal periodic solution and robustify it with respect to unknown model parameters.

[1]  Melvyn Sim,et al.  Tractable Approximations to Robust Conic Optimization Problems , 2006, Math. Program..

[2]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[3]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[4]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[5]  Ekaterina A. Kostina,et al.  Robust optimal feedback for terminal linear-quadratic control problems under disturbances , 2006, Math. Program..

[6]  Hans Georg Bock,et al.  Sensitivity Generation in an Adaptive BDF-Method , 2006, HPSC.

[7]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[8]  Satish J. Parulekar,et al.  Analysis of forced periodic operations of continuous bioprocesses—single input variations , 1998 .

[9]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[10]  P. Agrawal,et al.  An algorithm for operating a fed‐batch fermentor at optimum specific‐growth rate , 1989, Biotechnology and bioengineering.

[11]  Martin Mönnigmann,et al.  Numerical solution approaches for robust nonlinear optimal control problems , 2008, Comput. Chem. Eng..

[12]  Xiao Dong Chen,et al.  Comparison of Several Periodic Operations of a Continuous Fermentation Process , 1996 .

[13]  Moritz Diehl,et al.  An approximation technique for robust nonlinear optimization , 2006, Math. Program..

[14]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[15]  L El Ghaoui,et al.  ROBUST SOLUTIONS TO LEAST-SQUARE PROBLEMS TO UNCERTAIN DATA MATRICES , 1997 .

[16]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[18]  M. Chidambaram,et al.  Periodic operation of a bioreactor with input multiplicities , 1993 .