Nanostructured materials -mind over matter-

Abstract Considerable interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100nm, are now artificially synthesized by a wide variety of physical, chemical, and mechanical methods. Nanostructured materials with modulation dimensionalities of zero (clusters), one (multilayers), two (ultrafine-grained overlayers), and three (nanophase materials) are considered. The basic principles involved in the synthesis of these new materials are discussed in terms of the special properties sought using selected examples from particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented.

[1]  Hahn,et al.  Rigid-fluid transition in specific-size argon clusters. , 1988, Physical review letters.

[2]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[3]  R. Berry,et al.  Melting of clusters and melting , 1984 .

[4]  B. Blanpain,et al.  Short wavelength compositionally modulated Ni/Ni–P films prepared by electrodeposition , 1986 .

[5]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[6]  G. Thomas,et al.  Grain boundaries in nanophase materials , 1991 .

[7]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[8]  J. Weertman,et al.  Tensile strength and creep properties of nanocrystalline palladium , 1990 .

[9]  C. Koch,et al.  The hall-petch relationship in nanocrystalline iron produced by ball milling , 1990 .

[10]  G. Skandan,et al.  Phase characterization and stabilization due to grain size effects of nanostructured Y2O3 , 1992 .

[11]  Wolf,et al.  Structurally induced supermodulus effect in superlattices. , 1988, Physical review letters.

[12]  H. Hahn,et al.  New phases of erbium oxides , 1988 .

[13]  J. Weertman,et al.  Mechanical behavior of nanocrystalline Cu and Pd , 1991 .

[14]  Birringer,et al.  Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. , 1988, Physical review. B, Condensed matter.

[15]  Richard W. Siegel,et al.  Mechanical properties of nanophase TiO_2 as determined by nanoindentation , 1990 .

[16]  J. Eastman,et al.  Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation☆ , 1990 .

[17]  R. Birringer,et al.  Nanocrystalline ceramics: Possible candidates for net-shape forming , 1990 .

[18]  Y. Ishida,et al.  HREM-studies of the microstructure of nanocrystalline palladium , 1990 .

[19]  R. Uyeda,et al.  An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure , 1963 .

[20]  R. Averback,et al.  Temperature Dependence of the Hardness of Nanocrystalline Titanium Dioxide , 1991 .

[21]  R. Uyeda Studies of ultrafine particles in Japan: Crystallography. Methods of preparation and technological applications , 1991 .

[22]  J. C. Parker,et al.  Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes , 1990 .

[23]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[24]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[25]  A. Thölén On the formation and interaction of small metal particles , 1979 .

[26]  Louis E. Brus,et al.  SYNTHESIS, STABILIZATION, AND ELECTRONIC STRUCTURE OF QUANTUM SEMICONDUCTOR NANOCLUSTERS , 1989 .

[27]  M. Mayo,et al.  Nanoindentation of nanocrystalline ZnO , 1992 .

[28]  D. D. Beck,et al.  The dissociative adsorption of hydrogen sulfide over nanophase titanium dioxide , 1992 .

[29]  G. Skandan,et al.  Nanostructured Y2O3: Synthesis and relation to microstructure and properties , 1991 .

[30]  R. Birringer,et al.  Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? , 1984 .

[31]  L. Klein Sol-Gel Processing of Silicates , 1985 .

[32]  Sidney Yip,et al.  Materials interfaces : atomic-level structure and properties , 1992 .

[33]  R. Averback,et al.  Sintering characteristics of nanocrystalline TiO2―A study combining small angle neutron scattering and nitrogen absorption−BET , 1991 .

[34]  G. Stucky,et al.  Structure and optical properties of cadmium sulfide superclusters in zeolite hosts , 1989 .

[35]  Y. S. Cho,et al.  Nanocrystals by high energy ball milling , 1992 .

[36]  Richard W. Siegel,et al.  Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report , 1989 .

[37]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[38]  T Appenzeller,et al.  The man who dared to think small. , 1991, Science.

[39]  Don M. Parkin,et al.  Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures , 1993 .

[40]  J. Weertman,et al.  Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation , 1989 .

[41]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[42]  A. H. Pfund BISMUTH BLACK AND ITS APPLICATIONS , 1930 .

[43]  R. Averback,et al.  Sintering characteristics of nanocrystalline TiO_2 , 1990 .

[44]  G. Stucky,et al.  Quantum Confinement and Host/Guest Chemistry: Probing a New Dimension , 1990, Science.

[45]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[46]  R. Birringer,et al.  The Structure of Nanocrystalline Metals Investigated by Positron Lifetime Spectroscopy , 1987 .