Universality and asymptotic scaling in drilling percolation.

We present simulations of a three-dimensional percolation model studied recently by K. J. Schrenk et al. [Phys. Rev. Lett. 116, 055701 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.055701], obtained with a new and more efficient algorithm. They confirm most of their results in spite of larger systems and higher statistics used in the present Rapid Communication, but we also find indications that the results do not yet represent the true asymptotic behavior. The model is obtained by replacing the isotropic holes in ordinary Bernoulli percolation by randomly placed and oriented cylinders, with the constraint that the cylinders are parallel to one of the three coordinate axes. We also speculate on possible generalizations.

[1]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[2]  D. Bailin Field theory , 1979, Nature.