New bounds on $f(n,5,8)$

Let $f(n,p,q)$ denote the minimum number of colors needed to color the edges of $K_n$ so that every copy of $K_p$ receives at least $q$ distinct colors. In this note, we show $\frac{6}{7}(n-1) \leq f(n,5,8) \leq n + o(n)$. The upper bound is proven using the"conflict-free hypergraph matchings method"which was recently used by Mubayi and Joos to prove $f(n,4,5) = \frac{5}{6}n + o(n)$.

[1]  Patrick Bennett,et al.  Edge-coloring a graph $G$ so that every copy of a graph $H$ has an odd color class , 2023, 2307.01314.

[2]  Patrick Bennett,et al.  A random coloring process gives improved bounds for the Erd\H{o}s-Gy\'arf\'as problem on generalized Ramsey numbers , 2022, 2212.06957.

[3]  O. Pikhurko,et al.  On the $(6,4)$-problem of Brown, Erd\H{o}s and S\'os , 2022, 2209.14177.

[4]  D. Mubayi,et al.  Ramsey theory constructions from hypergraph matchings , 2022, 2208.12563.

[5]  Stefan Glock,et al.  Conflict-free hypergraph matchings , 2022, SODA.

[6]  L. Postle,et al.  Finding an almost perfect matching in a hypergraph avoiding forbidden submatchings , 2022, 2204.08981.

[7]  N. Alon,et al.  The probabilistic method , 2021, SODA '92.

[8]  Robert A. Krueger,et al.  Lower bounds on the Erdős–Gyárfás problem via color energy graphs , 2021, Journal of Graph Theory.

[9]  Alex Cameron,et al.  New upper bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers , 2020, Comb. Probab. Comput..

[10]  Emily Heath,et al.  New Upper Bounds for the Erd\H{o}s-Gy\'arf\'as Problem on Generalized Ramsey Numbers , 2020, 2006.09577.

[11]  Adam Sheffer,et al.  Local Properties via Color Energy Graphs and Forbidden Configurations , 2018, SIAM J. Discret. Math..

[12]  Adam Sheffer,et al.  Local Properties in Colored Graphs, Distinct Distances, and Difference Sets , 2018, Comb..

[13]  Alex Cameron,et al.  A (5,5)-Colouring of Kn with Few Colours , 2018, Combinatorics, Probability and Computing.

[14]  Alex Cameron,et al.  An Explicit Edge-Coloring of Kn with Six Colors on Every K5 , 2017, Electron. J. Comb..

[15]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[16]  David Conlon,et al.  The Erdős–Gyárfás problem on generalized Ramsey numbers , 2014, 1403.0250.

[17]  Dhruv Mubayi,et al.  An Explicit Construction for a Ramsey Problem , 2004, Comb..

[18]  Gábor N. Sárközy,et al.  An application of the regularity lemma in generalized Ramsey theory , 2003, J. Graph Theory.

[19]  Gábor N. Sárközy,et al.  On Edge Colorings with at Least q Colors in Every Subset of p Vertices , 2000, Electron. J. Comb..

[20]  Maria Axenovich,et al.  A generalized Ramsey problem , 2000, Discret. Math..

[21]  Zoltán Füredi,et al.  On Generalized Ramsey Theory: The Bipartite Case , 2000, J. Comb. Theory, Ser. B.

[22]  Dhruv Mubayi,et al.  Note – Edge-Coloring Cliques with Three Colors on All 4-Cliques , 1998, Comb..

[23]  András Gyárfás,et al.  A variant of the classical Ramsey problem , 1997, Comb..

[24]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[25]  Michelle Delcourt,et al.  On generalized Ramsey numbers in the sublinear regime , 2022 .

[26]  P. Erdös Problems and Results on Finite and Infinite Graphs , 1975 .

[27]  P. Erdos,et al.  Solved and Unsolved Problems in Combinatorics and Combinatorial Number Theory , 2022 .