Cloning quantum entanglement in arbitrary dimensions

We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.

[1]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[2]  M. Hamermesh Group theory and its application to physical problems , 1962 .

[3]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.

[4]  Nicolas J. Cerf,et al.  Cloning a real d-dimensional quantum state on the edge of the no-signaling condition , 2003 .

[5]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[7]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[8]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[9]  Nicolas J. Cerf,et al.  Cloning the entanglement of a pair of quantum bits , 2004 .

[10]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[12]  D. Dieks Communication by EPR devices , 1982 .

[13]  Extremal equation for optimal completely positive maps , 2001, quant-ph/0105124.

[14]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[15]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.