Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem

The performance of decoder-based evolutionary algorithms (EAs) strongly depends on the locality of the used decoder and operators. While many approaches to characterize locality are based on the fitness landscape, we emphasize the explicit relation between genotypes and phenotypes. Statistical measures are demonstrated to reliably predict locality properties of selected decoder-based EAs for the multidimensional knapsack problem. Empirical results indicate that (i) strong locality is a necessary condition for high performance, (ii) the concept of heuristic bias also strongly affects solution quality, and (iii) it is important to maintain population diversity, e.g. by phenotypic duplicate elimination.

[1]  G. Raidl Weight-codings in a genetic algorithm for the multi-constraint knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Jens Gottlieb,et al.  On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem , 1999, Artificial Evolution.

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  Derek H. Smith,et al.  A Permutation Based Genetic Algorithm for Minimum Span Frequency Assignment , 1998, PPSN.

[5]  Robert Hinterding,et al.  Mapping, order-independent genes and the knapsack problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[7]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[8]  Bernhard Sendhoff,et al.  A Condition for the Genotype-Phenotype Mapping: Causality , 1997, ICGA.

[9]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[10]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[11]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[12]  Lee Altenberg,et al.  Fitness Distance Correlation Analysis: An Instructive Counterexample , 1997, ICGA.

[13]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[14]  G. Raidl,et al.  An improved genetic algorithm for the multiconstrained 0-1 knapsack problem , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Jens Gottlieb Evolutionary Algorithms for Multidimensional Knapsack Problems: the Relevance of the Boundary f the Feasible Region , 1999, GECCO.

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  C. Igel Causality of hierarchical variable length representations , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[18]  S. Voß,et al.  Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .

[19]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[20]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[21]  Marc Schoenauer,et al.  A Priori Comparison of Binary Crossover Operators: No Universal Statistical Measure, But a Set of Hints , 1997, Artificial Evolution.

[22]  David B. Fogel,et al.  Using fitness distributions to design more efficient evolutionary computations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[23]  Simon Ronald,et al.  Robust Encodings in Genetic Algorithms , 1997 .

[24]  Osman Oguz,et al.  A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .