Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem
暂无分享,去创建一个
[1] G. Raidl. Weight-codings in a genetic algorithm for the multi-constraint knapsack problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[2] Jens Gottlieb,et al. On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem , 1999, Artificial Evolution.
[3] D. E. Goldberg,et al. Genetic Algorithms in Search , 1989 .
[4] Derek H. Smith,et al. A Permutation Based Genetic Algorithm for Minimum Span Frequency Assignment , 1998, PPSN.
[5] Robert Hinterding,et al. Mapping, order-independent genes and the knapsack problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[6] Bernard Manderick,et al. The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.
[7] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[8] Bernhard Sendhoff,et al. A Condition for the Genotype-Phenotype Mapping: Causality , 1997, ICGA.
[9] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[10] Jean-Yves Potvin,et al. Genetic Algorithms for the Traveling Salesman Problem , 2005 .
[11] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[12] Lee Altenberg,et al. Fitness Distance Correlation Analysis: An Instructive Counterexample , 1997, ICGA.
[13] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[14] G. Raidl,et al. An improved genetic algorithm for the multiconstrained 0-1 knapsack problem , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[15] Jens Gottlieb. Evolutionary Algorithms for Multidimensional Knapsack Problems: the Relevance of the Boundary f the Feasible Region , 1999, GECCO.
[16] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[17] C. Igel. Causality of hierarchical variable length representations , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[18] S. Voß,et al. Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .
[19] Terry Jones,et al. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.
[20] Hasan Pirkul,et al. A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .
[21] Marc Schoenauer,et al. A Priori Comparison of Binary Crossover Operators: No Universal Statistical Measure, But a Set of Hints , 1997, Artificial Evolution.
[22] David B. Fogel,et al. Using fitness distributions to design more efficient evolutionary computations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[23] Simon Ronald,et al. Robust Encodings in Genetic Algorithms , 1997 .
[24] Osman Oguz,et al. A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .
[25] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .