Strength in numbers: large and permanent colonies have higher queen oviposition rates in the invasive Argentine ant (Linepithema humile, Mayr).

Polydomy associated with unicoloniality is a common trait of invasive species. In the invasive Argentine ant, colonies are seasonally polydomous. Most follow a seasonal fission-fussion pattern: they disperse in the spring and summer and aggregate in the fall and winter. However, a small proportion of colonies do not migrate; instead, they inhabit permanent nesting sites. These colonies are large and highly polydomous. The aim of this study was to (1) search for differences in the fecundity of queens between mother colonies (large and permanent) and satellite colonies (small and temporal), (2) determine if queens in mother and satellite colonies have different diets to clarify if colony size influences social organization and queen feeding, and (3) examine if colony location relative to the invasion front results in differences in the queen's diet. Our results indicate that queens from mother nests are more fertile than queens from satellite nests and that colony location does not affect queen oviposition rate. Ovarian dissections suggest that differences in ovarian morphology are not responsible for the higher queen oviposition rate in mother vs. satellite nests, since there were no differences in the number and length of ovarioles in queens from the two types of colonies. In contrast, the higher δ(15)N values of queens from mother nests imply that greater carnivorous source intake accounts for the higher oviposition rates.

[1]  D. Gordon,et al.  Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species , 1996, Oecologia.

[2]  Assessment of the Argentine ant invasion management by means of manual removal of winter nests in mixed cork oak and pine forests , 2014, Biological Invasions.

[3]  Charles D. Michener,et al.  Reproductive efficiency in relation to colony size in hymenopterous societies , 1964, Insectes Sociaux.

[4]  D. Gordon,et al.  Linking Temporal and Spatial Scales in the Study of an Argentine Ant Invasion , 2006, Biological Invasions.

[5]  David J. T. Sumpter,et al.  Comparing foraging behaviour of small and large honey‐bee colonies by decoding waggle dances made by foragers , 2004 .

[6]  D. Gordon,et al.  Effects of Argentine Ants on Invertebrate Biodiversity in Northern California , 1997 .

[7]  W. Newell,et al.  The Argentine Ant , 2010 .

[8]  N. Blüthgen,et al.  Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy , 2002 .

[9]  S. Abril,et al.  Foraging Activity and Dietary Spectrum of the Argentine Ant (Hymenoptera: Formicidae) in Invaded Natural Areas of the Northeast Iberian Peninsula , 2007, Environmental entomology.

[10]  A. Suarez,et al.  Trophic ecology of the invasive argentine ant: spatio-temporal variation in resource assimilation and isotopic enrichment , 2010, Oecologia.

[11]  J. Marro,et al.  Incidence des facteurs écologiques sur le cycle annuel et l'activité saisonnière de la fourmi d'Argentine,Iridomyrmex humilis Mayr (Hymenoptera, Formicidae), dans la région d'Antibes , 1973, Insectes Sociaux.

[12]  G. Markin Food distribution within laboratory colonies of the argentine ant,Tridomyrmex humilis (Mayr) , 1970, Insectes Sociaux.

[13]  W. M. Wheeler,et al.  Ants : their structure, development and behavior , 1960 .

[14]  M. J. Deniro,et al.  Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals , 1978 .

[15]  J. Giliomee,et al.  The effect of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), on flower-visiting insects of Protea nitida Mill. (Proteaceae) , 1996 .

[16]  B. Cole,et al.  Colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis , 2000, Insectes Sociaux.

[17]  Erik V. Nordheim,et al.  Productivity in a social wasp: per capita output increases with swarm size , 1996 .

[18]  Gabriel J Bowen,et al.  Stable isotopes as one of nature's ecological recorders. , 2006, Trends in ecology & evolution.

[19]  D. Holway Effect of Argentine ant invasions on ground-dwelling arthropods in northern California riparian woodlands , 1998, Oecologia.

[20]  PLASTICITY IN QUEEN NUMBER AND SOCIAL STRUCTURE IN THE INVASIVE ARGENTINE ANT (LINEPITHEMA HUMILE) , 2002, Evolution; international journal of organic evolution.

[21]  C. Gómez,et al.  Consequences of the Argentine ant, Linepithema humile (Mayr), invasion on pollination of Euphorbia characias (L.) (Euphorbiaceae) , 2005 .

[22]  J. Deneubourg,et al.  Colony size, communication and ant foraging strategy , 1989 .

[23]  J. P. Edwards The effects of a juvenile hormone analogue on laboratory colonies of pharaoh's ant, Monomorium pharaonis (L.) (Hymenoptera, Formicidae) , 1975 .

[24]  P. Pons,et al.  Does Argentine ant invasion affect prey availability for foliage-gleaning birds? , 2010, Biological Invasions.

[25]  B. M. Glancey,et al.  Effect of the insect growth regulator fenoxycarb on the ovaries of queens of the red imported fire ant (Hymenoptera: Formicidae). , 1988 .

[26]  A. Suarez,et al.  Trophic ecology of invasive Argentine ants in their native and introduced ranges , 2007, Proceedings of the National Academy of Sciences.

[27]  H. Hakkarainen,et al.  The role of food and colony size in sexual offspring production in a social insect: an experiment , 2007 .

[28]  S. Abril,et al.  More and bigger queens: a clue to the invasive success of the Argentine ant (Hymenoptera: Formicidae) in natural habitats , 2013 .

[29]  E. Wilson,et al.  The number of queens: An important trait in ant evolution , 2004, Naturwissenschaften.

[30]  Douglas T. Bolger,et al.  EFFECTS OF FRAGMENTATION AND INVASION ON NATIVE ANT COMMUNITIES IN COASTAL SOUTHERN CALIFORNIA , 1998 .

[31]  D. Gordon,et al.  Nest connectivity and colony structure in unicolonial Argentine ants , 2008, Insectes Sociaux.

[32]  J. Fewell,et al.  Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus , 2011 .

[33]  W. Bond,et al.  Collapse of an Ant‐Plant Mutalism: The Argentine Ant (Iridomyrmex Humilis) and Myrmecochorous Proteaceae , 1984 .

[34]  K. Hartfelder,et al.  Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies , 2006, Behavioral Ecology and Sociobiology.

[35]  G. Gebauer,et al.  Stable N-isotope signatures of central European ants – assessing positions in a trophic gradient , 2007, Insectes Sociaux.

[36]  Bertrand Schatz,et al.  Polydomy in ants: what we know, what we think we know, and what remains to be done , 2007 .

[37]  E. Nordheim,et al.  Per-capita productivity in a social wasp: no evidence for a negative effect of colony size , 2006, Insectes Sociaux.

[38]  V. Framenau,et al.  Foraging decisions of individual workers vary with colony size in the greenhead ant Rhytidoponera metallica (Formicidae, Ectatomminae) , 2005, Insectes Sociaux.

[39]  A. Suarez,et al.  Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Suarez,et al.  Measuring the trophic ecology of ants using stable isotopes , 2006, Insectes Sociaux.

[41]  R. Matthews,et al.  Ants. , 1898, Science.

[42]  X. Cerdá,et al.  Behaviour-mediated group size effect constrains reproductive decisions in a social insect , 2012, Animal Behaviour.

[43]  C. Gómez,et al.  Can the Argentine ant (Linepithema humile Mayr) replace native ants in myrmecochory , 2003 .

[44]  Melissa L. Thomas,et al.  Colony size affects division of labour in the ponerine ant Rhytidoponera metallica , 2003, Naturwissenschaften.

[45]  D. Davidson,et al.  Explaining the Abundance of Ants in Lowland Tropical Rainforest Canopies , 2003, Science.

[46]  D. Gordon,et al.  Seasonal spatial dynamics and causes of nest movement in colonies of the invasive Argentine ant (Linepithema humile) , 2006 .