On the convergence of conservative difference schemes for the 2D generalized Rosenau-Korteweg de Vries equation

Abstract Two conservative finite difference schemes for the Rosenau–KdV equation (RKdV) in 2D are proposed. The first scheme is two-level and nonlinear implicit. The second scheme is three-level and linear-implicit. Existence of its difference solutions has been shown. It is proved by the discrete energy method that the two schemes are uniquely solvable, unconditionally stable, and the convergence is of second order in the uniform norm. Numerical experiments demonstrate that the schemes are accurate and efficient.

[1]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[2]  H. Y. Lee,et al.  The convergence of the fully discrete solution for the Roseneau equation , 1996 .

[3]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[4]  Amiya K. Pani,et al.  A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation , 1998 .

[5]  T. Achouri,et al.  On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation , 2006, Appl. Math. Comput..

[6]  Daisuke Furihata,et al.  A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation , 2003 .

[7]  Luming Zhang,et al.  A finite difference scheme for generalized regularized long-wave equation , 2005, Appl. Math. Comput..

[8]  Philip Rosenau,et al.  A Quasi-Continuous Description of a Nonlinear Transmission Line , 1986 .

[9]  Amiya K. Pani,et al.  Numerical methods for the rosenau equation , 2001 .

[10]  Qianshun Chang,et al.  Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion , 1991 .

[11]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[12]  Kelong Zheng,et al.  Two Conservative Difference Schemes for the Generalized Rosenau Equation , 2010 .

[13]  Luming Zhang,et al.  A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..

[14]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[15]  Luming Zhang,et al.  On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation , 2012 .

[16]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[17]  Philip Rosenau,et al.  Dynamics of Dense Discrete Systems High Order Effects , 1988 .

[18]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[19]  M ChooS,et al.  Cahn‐Hilliad方程式に関する保存型非線形差分スキーム‐II , 2000 .

[20]  Qianshun Chang,et al.  A Conservative Difference Scheme for the Zakharov Equations , 1994 .

[21]  Zhengru Zhang,et al.  The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model , 2012 .

[22]  S. K. Chung,et al.  FINITE DIFFERENCE APPROXIMATE SOLUTIONS FOR THE ROSENAU EQUATION , 1998 .

[23]  Khaled Omrani,et al.  A new conservative finite difference scheme for the Rosenau equation , 2008, Appl. Math. Comput..

[24]  S. Ha,et al.  Finite element galerkin solutions for the rosenau equation , 1994 .

[25]  Ting-chun Wang,et al.  Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator , 2006, Appl. Math. Comput..

[26]  Yau Shu Wong,et al.  An initial-boundary value problem of a nonlinear Klein-Gordon equation , 1997 .

[27]  Yu-Lin Chou Applications of Discrete Functional Analysis to the Finite Difference Method , 1991 .

[28]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[29]  H. Y. Lee,et al.  The convergence of finite element Galerkin solution for the Roseneau equation , 1998 .

[30]  S. Kesavan,et al.  Topics in functional analysis and applications , 1989 .

[31]  Jin-Ming Zuo,et al.  Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations , 2009, Appl. Math. Comput..