Cooperative and Competitive Spreading Dynamics on the Human Connectome

[1]  P Tewarie,et al.  The relation between structural and functional connectivity patterns in complex brain networks. , 2016, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Stefan Everling,et al.  Network Structure Shapes Spontaneous Functional Connectivity Dynamics , 2015, The Journal of Neuroscience.

[3]  J. A. Roberts,et al.  The heavy tail of the human brain , 2015, Current Opinion in Neurobiology.

[4]  Sean M. Polyn,et al.  Functional interactions between large-scale networks during memory search. , 2015, Cerebral cortex.

[5]  Marc-Thorsten Hütt,et al.  A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks , 2015, Scientific Reports.

[6]  Joaquín Goñi,et al.  A Network Convergence Zone in the Hippocampus , 2014, PLoS Comput. Biol..

[7]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[8]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[9]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[10]  H. Voss,et al.  Network diffusion accurately models the relationship between structural and functional brain connectivity networks , 2014, NeuroImage.

[11]  G. Donnan,et al.  Research Priorities , 2014, International journal of stroke : official journal of the International Stroke Society.

[12]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[13]  Peter J Hellyer,et al.  The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention , 2014, The Journal of Neuroscience.

[14]  Alessandro Flammini,et al.  Optimal network clustering for information diffusion , 2014, Physical review letters.

[15]  Olaf Sporns,et al.  Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks , 2014, PLoS Comput. Biol..

[16]  Richard F. Betzel,et al.  Resting-brain functional connectivity predicted by analytic measures of network communication , 2013, Proceedings of the National Academy of Sciences.

[17]  Edward T. Bullmore,et al.  Fledgling pathoconnectomics of psychiatric disorders , 2013, Trends in Cognitive Sciences.

[18]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[19]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[20]  Cedric E. Ginestet,et al.  Cognitive relevance of the community structure of the human brain functional coactivation network , 2013, Proceedings of the National Academy of Sciences.

[21]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[22]  T. Insel,et al.  The NIH BRAIN Initiative , 2013, Science.

[23]  Viktor K. Jirsa,et al.  The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging , 2013, Brain Connect..

[24]  Richard F. Betzel,et al.  Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity , 2013, Network Science.

[25]  Marcus Kaiser,et al.  Spreading dynamics on spatially constrained complex brain networks , 2013, Journal of The Royal Society Interface.

[26]  Mason A. Porter,et al.  Robust Detection of Dynamic Community Structure in Networks , 2012, Chaos.

[27]  L. Cammoun,et al.  The Connectome Mapper: An Open-Source Processing Pipeline to Map Connectomes with MRI , 2012, PloS one.

[28]  A. Zalesky,et al.  Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection , 2012, Proceedings of the National Academy of Sciences.

[29]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[30]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[31]  M. Weiner,et al.  A Network Diffusion Model of Disease Progression in Dementia , 2012, Neuron.

[32]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[33]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[34]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[35]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[36]  Cun-Quan Zhang,et al.  Emergence of segregation in evolving social networks , 2011, Proceedings of the National Academy of Sciences.

[37]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[38]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[39]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[40]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[41]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[42]  Simon W. Moore,et al.  Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits , 2010, PLoS Comput. Biol..

[43]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[44]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.

[45]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[46]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[47]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[48]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[49]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[50]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[51]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[52]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[54]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[55]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[56]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[57]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[58]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[59]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[60]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[62]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[63]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[65]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[66]  Alessandro Vespignani,et al.  EPIDEMIC SPREADING IN SCALEFREE NETWORKS , 2001 .

[67]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[68]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[69]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[70]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[71]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[72]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[73]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .