Noise-aided processing : Revisiting dithering in a Σ ∆ quantizer

Stochastic resonance can be seen as a phenomenon where a nonlinear system is able to make an input signal cooperatively interact with an input noise. In this paper we show that a particular Σ∆ quantizer, which is a strongly nonlinear dynamical system, can provide stochastic resonance effects. In particular we will show that quantizing a sine, adding a small amount of noise in the input, can improve the quantization process. In particular, the output local signal-to-noise ratio exhibits a maximum when plotted against the noise amplitude.

[1]  Wiesenfeld,et al.  Theory of stochastic resonance. , 1989, Physical review. A, General physics.

[2]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[3]  Peter Jung,et al.  STOCHASTIC RESONANCE AND OPTIMAL DESIGN OF THRESHOLD DETECTORS , 1995 .

[4]  Patrick Marquié,et al.  Noise-Enhanced Propagation in a dissipative Chain of Triggers , 2002, Int. J. Bifurc. Chaos.

[5]  Wu Chou,et al.  Dithering and its effects on sigma-delta and multistage sigma-delta modulation , 1991, IEEE Trans. Inf. Theory.

[6]  S. Kay,et al.  Can detectability be improved by adding noise? , 2000, IEEE Signal Processing Letters.

[7]  Pierre-Olivier Amblard,et al.  Stochastic resonance in locally optimal detectors , 2003, IEEE Trans. Signal Process..

[8]  Pierre Marchand,et al.  Détection et reconnaissance de modulations numériques à l'aide des statistiques cycliques d'ordre supérieur , 1998 .

[9]  L. Gammaitoni,et al.  Stochastic resonance and the dithering effect in threshold physical systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Bulsara,et al.  Signal detection statistics of stochastic resonators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  F. Chapeau-Blondeau Nonlinear test statistic to improve signal detection in non-Gaussian noise , 2000, IEEE Signal Processing Letters.

[12]  G. Parisi,et al.  Stochastic resonance in climatic change , 1982 .

[13]  Wannamaker,et al.  Stochastic resonance as dithering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Pierre-Olivier Amblard,et al.  On the use of stochastic resonance in sine detection , 2002, Signal Process..

[15]  Adi R. Bulsara,et al.  DC SIGNAL DETECTION VIA DYNAMICAL ASYMMETRY IN A NONLINEAR DEVICE , 1998 .

[16]  A. Sutera,et al.  The mechanism of stochastic resonance , 1981 .

[17]  G. V. Anand,et al.  Design of detectors based on stochastic resonance , 2003, Signal Process..

[18]  Riccardo Mannella,et al.  Linear response theory in stochastic resonance , 1993, chao-dyn/9308002.

[19]  Adi R. Bulsara,et al.  Single effective neuron: dendritic coupling effects and stochastic resonance , 1993, Biological Cybernetics.

[20]  S. Fauve,et al.  Stochastic resonance in a bistable system , 1983 .

[21]  Pierre-Olivier Amblard,et al.  Stochastic resonance in discrete time nonlinear AR(1) models , 1999, IEEE Trans. Signal Process..

[22]  Vincenzo Galdi,et al.  Evaluation of stochastic-resonance-based detectors of weak harmonic signals in additive white Gaussian noise , 1998 .

[23]  Leon O. Chua,et al.  Stochastic resonance in Chua's Circuit , 1993, Chua's Circuit.

[24]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[25]  Salvatore Graziani,et al.  Stochastic Resonance: Theory and Applications , 2000 .

[26]  J. Rung,et al.  General measures for signal-noise separation in nonlinear dynamical systems. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Roy,et al.  Observation of stochastic resonance in a ring laser. , 1988, Physical review letters.