Up-to-Boundary Pointwise Gradient Estimates for Very Singular Quasilinear Elliptic Equations with Mixed Data

Abstract This paper establishes pointwise estimates up to boundary for the gradient of weak solutions to a class of very singular quasilinear elliptic equations with mixed data { - div ⁡ ( 𝐀 ⁢ ( x , D ⁢ u ) ) = g - div ⁡ f in ⁢ Ω , u = 0 on ⁢ ∂ ⁡ Ω , \left\{\begin{aligned} \displaystyle-\operatorname{div}(\mathbf{A}(x,Du))&% \displaystyle=g-\operatorname{div}f&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right. where Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} is sufficiently flat in the sense of Reifenberg.

[1]  L. Ambrosio,et al.  Lectures on Elliptic Partial Differential Equations , 2019 .

[2]  N. Phuc,et al.  Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains , 2011 .

[3]  Le Xuan Truong,et al.  Weighted gradient estimates for the class of very singular p-Laplace system , 2021 .

[4]  S. Müller,et al.  Uniqueness and maximal regularity for nonlinear elliptic systems of n � Laplace type with measure valued right hand side , 2003 .

[5]  E. Giusti Direct methods in the calculus of variations , 2003 .

[6]  G. M. Lieberman Solvability of quasilinear elliptic equations with nonlinear boundary conditions , 1982 .

[7]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[8]  N. Phuc Global integral gradient bounds for quasilinear equations below or near the natural exponent , 2014 .

[9]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[10]  E. J. McShane,et al.  Solution of the Plateau problem form-dimensional surfaces of varying topological type , 1960 .

[11]  Lihe Wang,et al.  Elliptic equations with BMO coefficients in Reifenberg domains , 2004 .

[12]  Pilsoo Shin,et al.  Global Sobolev regularity for general elliptic equations of p-Laplacian type , 2017, Calculus of Variations and Partial Differential Equations.

[13]  Emmanuele DiBenedetto,et al.  C1 + α local regularity of weak solutions of degenerate elliptic equations , 1983 .

[14]  V. Maz'ya,et al.  Global Boundedness of the Gradient for a Class of Nonlinear Elliptic Systems , 2012, 1212.5773.

[15]  N. Phuc Morrey global bounds and quasilinear Riccati type equations below the natural exponent , 2014 .

[16]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[17]  N. Phuc,et al.  Quasilinear Riccati type equations with distributional data in Morrey space framework , 2016 .

[18]  N. Phuc Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations , 2013, 1309.1064.

[19]  T. Kuusi,et al.  The p-Laplace system with right-hand side in divergence form: Inner and up to the boundary pointwise estimates , 2017 .

[20]  E. DiBenedetto,et al.  ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC SYSTEMS , 1993 .

[21]  T. Kuusi,et al.  Vectorial nonlinear potential theory , 2018 .

[22]  N. Phuc,et al.  Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations , 2014, 1412.4833.

[23]  G. M. Lieberman The dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data , 1986 .

[24]  Giuseppe Di Fazio,et al.  Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations , 2018, Revista Matemática Iberoamericana.

[25]  G. M. Lieberman Solvability of quasilinear elliptic equations with nonlinear boundary conditions. II , 1984 .

[26]  J. L. Lewis Regularity of the derivatives of solutions to certain degenerate elliptic equations , 1983 .

[27]  Lihe Wang A Geometric Approach to the Calderón-Zygmund Estimates , 2003 .

[28]  Seungjin Ryu,et al.  Global weighted estimates for the gradient of solutions to nonlinear elliptic equations , 2013 .

[29]  G. Mingione,et al.  Gradient estimates via linear and nonlinear potentials , 2010 .

[30]  N. Phuc,et al.  Global Estimates for Quasilinear Elliptic Equations on Reifenberg Flat Domains , 2012 .

[31]  G. Mingione,et al.  Gradient estimates via non-linear potentials , 2009, 0906.4939.

[32]  Free boundary regularity for harmonic measures and Poisson kernels , 1999, math/9909197.

[33]  Truyen V. Nguyen,et al.  Interior gradient estimates for quasilinear elliptic equations , 2015, 1508.02425.

[34]  J. Kinnunen,et al.  A Local estimate for nonlinear equations with discontinuous coefficients , 1999 .

[35]  C. Kenig,et al.  Poisson kernel characterization of Reifenberg flat chord arc domains , 2003 .

[36]  Quoc-Hung Nguyen Potential Estimates and Quasilinear Parabolic Equations with Measure Data , 2014, Memoirs of the American Mathematical Society.

[37]  Lawrence C. Evans,et al.  A new proof of local C1,α regularity for solutions of certain degenerate elliptic p.d.e. , 1982 .

[38]  T. Iwaniec Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators , 1983 .

[39]  Quoc-Hung Nguyen Global estimates for quasilinear parabolic equations on Reifenberg flat domains and its applications to Riccati type parabolic equations with distributional data , 2015, Calculus of Variations and Partial Differential Equations.

[40]  Quoc-Hung Nguyen,et al.  Good-$$\lambda $$λ and Muckenhoupt–Wheeden type bounds in quasilinear measure datum problems, with applications , 2018, Mathematische Annalen.

[41]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[42]  Quoc-Hung Nguyen,et al.  Existence and regularity estimates for quasilinear equations with measure data: the case $1 , 2020, 2003.03725.

[43]  Quoc-Hung Nguyen,et al.  Pointwise gradient estimates for a class of singular quasilinear equations with measure data , 2019, Journal of Functional Analysis.

[44]  The p-harmonic system with measure-valued right hand side , 1997 .

[45]  M. Warma,et al.  Existence of bounded solutions for a class of quasilinear elliptic systems on manifolds with boundary , 2013 .

[46]  Quoc-Hung Nguyen,et al.  Quasilinear Riccati-Type Equations with Oscillatory and Singular Data , 2020, Advanced Nonlinear Studies.