Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid

[1]  Jin-young Park,et al.  Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys , 2017 .

[2]  Jihua Chen,et al.  Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system , 2017 .

[3]  Kyung-Mox Cho,et al.  Effect of Mn addition on grain refinement of biodegradable Mg4Zn0.5Ca alloy , 2016 .

[4]  M. Jiang,et al.  Development of dilute Mg-Zn-Ca-Mn alloy with high performance via extrusion , 2016 .

[5]  Jian Peng,et al.  Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy , 2016 .

[6]  Liguo Wang,et al.  Microstructures and degradation mechanism in simulated body fluid of biomedical Mg–Zn–Ca alloy processed by high pressure torsion , 2016 .

[7]  Yufeng Zheng,et al.  Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application , 2016 .

[8]  Yufeng Zheng,et al.  Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals , 2016 .

[9]  P. Chartrand,et al.  Experimental study of the crystal structure of the Mg15 − xZnxSr3 ternary solid solution in the Mg–Zn–Sr system at 300 °C , 2015 .

[10]  D. Zander,et al.  Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys , 2015 .

[11]  K. R. Ravi,et al.  An analytical approach to elucidate the mechanism of grain refinement in calcium added Mg–Al alloys , 2015 .

[12]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[13]  Liguo Wang,et al.  Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant , 2014 .

[14]  Dingfei Zhang,et al.  Effect of Y addition on microstructure and mechanical properties of Mg–Zn–Mn alloy , 2014 .

[15]  Fanhao Meng,et al.  Osteogenic activity and antibacterial effect of zinc ion implanted titanium. , 2014, Colloids and surfaces. B, Biointerfaces.

[16]  M. Medraj,et al.  Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys , 2014 .

[17]  Yufeng Zheng,et al.  Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. , 2014, Acta biomaterialia.

[18]  Song-Jeng Huang,et al.  Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg-Zn-Ca bulk metallic glass composites. , 2013, Materials science & engineering. C, Materials for biological applications.

[19]  R. Raman,et al.  Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E , 2013 .

[20]  Beom-Su Kim,et al.  Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. , 2013, Materials science & engineering. C, Materials for biological applications.

[21]  H. Bakhsheshi‐Rad,et al.  Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys , 2012 .

[22]  A. Aissa,et al.  Study of mixed Ca–Zn hydroxyapatite surface modified by lactic acid , 2012 .

[23]  A. Cook,et al.  Calibration of the scanning Kelvin probe force microscope under controlled environmental conditions , 2012 .

[24]  C. Bolfarini,et al.  Numerical evaluation of reduction of stress shielding in laser coated hip prostheses , 2011 .

[25]  Honghui Xu,et al.  Experimental investigation and thermodynamic modeling of the Mg–Si–Zn system , 2011 .

[26]  Y. Zheng,et al.  Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. , 2010, Acta biomaterialia.

[27]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[28]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[29]  Kazuhiro Hono,et al.  Age-hardening response of Mg-0.3 at.%Ca alloys with different Zn contents , 2009 .

[30]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[31]  G. Song,et al.  Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium , 2008 .

[32]  D. Eliezer,et al.  The role of Si and Ca on new wrought Mg–Zn–Mn based alloy , 2007 .

[33]  D. Eliezer,et al.  Microstructure and corrosion behavior of Mg–Zn–Ag alloys , 2006 .

[34]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[35]  M. Bamberger,et al.  Solidification, solution treatment and age hardening of a Mg–1.6 wt.% Ca–3.2 wt.% Zn alloy , 2006 .

[36]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[37]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.

[38]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[39]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[40]  R. Morrell Characterization of Ceramics: R. E. Loehman (Ed) Butterworth-Heinemann, Stoneham, Mass, 1993, 295 pp , 1994 .