Approximating Geodesics on Point Set Surfaces

We present a technique for computing piecewise linear approximations of geodesics on point set surfaces by minimizing an energy function defined for piecewise linear path. The function considers path length, closeness to the surface for the nodes of the piecewise linear path and for the intermediate line segments. Our method is robust with respect to noise and outliers. In order to avoid local minima, a good initial piecewise linear approximation of a geodesic is provided by Dijkstra's algorithm that is applied to a proximity graph constructed over the point set. As the proximity graph we use a sphere-of-influence weighted graph extended for surfel sets. The convergence of our method has been studied and compared to results of other methods by running experiments on surfaces whose geodesics can be computed analytically. Our method is presented and optimized for surfel-based representations but it has been implemented also for MLS surfaces. Moreover, it can also be applied to other surface representations, e.g., triangle meshes, radial-basis functions, etc.

[1]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[2]  Helmut Pottmann,et al.  A variational approach to spline curves on surfaces , 2005, Comput. Aided Geom. Des..

[3]  L. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004 .

[4]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[5]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[6]  Marcin Novotni,et al.  Gomputing geodesic distances on triangular meshes , 2002 .

[7]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[8]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[9]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[10]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[11]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Ron Kimmel,et al.  Computational Surface Flattening: A Voxel-Based Approach , 2001, IWVF.

[13]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[14]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[15]  H. Pottmann,et al.  Energy-minimizing splines in manifolds , 2004, SIGGRAPH 2004.

[16]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface and its applications , 2001, Comput. Aided Des..

[17]  Hans-Peter Seidel,et al.  3D scattered data approximation with adaptive compactly supported radial basis functions , 2004, Proceedings Shape Modeling Applications, 2004..

[18]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[19]  Laurent D. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[20]  Kenji Shimada,et al.  Finding the Shortest Path on a Polyhedral Surface and Its Application to Quality Assurance of Electric Components , 2004 .

[21]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[22]  John C. Hart,et al.  A sampling theorem for MLS surfaces , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[23]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[24]  F. Mémoli,et al.  Distance functions and geodesics on points clouds , 2002 .

[25]  Alla Sheffer,et al.  Geodesic-based Surface Remeshing , 2003, IMR.

[26]  Marc Alexa,et al.  On Normals and Projection Operators for Surfaces Defined by Point Sets , 2004, PBG.

[27]  Karl Henrik Johansson,et al.  Hybrid Geodesics as Optimal Solutions to the Collision-Free Motion Planning Problem , 2001, HSCC.

[28]  Steven J. Gortler,et al.  Minimal discrete curves and surfaces , 2004 .

[29]  N. Dodgson,et al.  Intrinsic point cloud simplification , 2004 .

[30]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[31]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[32]  Tamal K. Dey,et al.  An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .

[33]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[34]  Leif Kobbelt,et al.  A survey of point-based techniques in computer graphics , 2004, Comput. Graph..

[35]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[36]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[37]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[38]  Ron Kimmel,et al.  Computational Surface Flattening: A Voxel-Based Approach , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Patrick Reuter,et al.  Point-based modelling and rendering using radial basis functions , 2003, GRAPHITE '03.

[40]  Leif Kobbelt,et al.  Optimized Sub‐Sampling of Point Sets for Surface Splatting , 2004, Comput. Graph. Forum.

[41]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[42]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Ron Kimmel,et al.  Finding The Shortest Paths on Surfaces by Fast Global Approximation and Precise Local Refinement , 1996, Int. J. Pattern Recognit. Artif. Intell..

[44]  Michael Garland,et al.  Similarity-based surface modelling using geodesic fans , 2004, SGP '04.

[45]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[46]  Gabriel Zachmann,et al.  Point cloud surfaces using geometric proximity graphs , 2004, Comput. Graph..

[47]  Steven M. LaValle,et al.  Planning algorithms , 2006 .