Some remarks on Q ‐compensated sparse deconvolution without knowing the quality factor Q

[1]  Hui Zhou,et al.  Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation , 2016 .

[2]  J. Matsushima,et al.  Quantifying uncertainties in attenuation estimation at methane-hydrate-bearing zones using sonic waveform logs , 2013 .

[3]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[4]  Wei Zhao,et al.  Enhancing resolution of nonstationary seismic data by molecular-Gabor transform , 2013 .

[5]  Hossein S. Aghamiry,et al.  Interval-Q estimation and compensation: An adaptive dictionary-learning approach , 2018, GEOPHYSICS.

[6]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[7]  Fernando S. Moraes,et al.  High-resolution gathers by inverse Q filtering in the wavelet domain , 2013 .

[8]  Jiang-yun Pei,et al.  Near-surface Q model building and inverse Q filtering:A case study from Daqing oilfield, China , 2013 .

[9]  Justin K. Dix,et al.  Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data , 2008 .

[10]  Hui Zhou,et al.  Adaptive stabilization for Q-compensated reverse time migration , 2018 .

[11]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[12]  E. Blias Accurate interval Q-factor estimation from VSP data , 2012 .

[13]  B. Ursin,et al.  Comparison of seismic attenuation models using zero-offset vertical seismic profiling (VSP) data , 2005 .

[14]  Xiaohong Chen,et al.  Absorption-compensation method by l1-norm regularization , 2014 .

[15]  Tadeusz J. Ulrych,et al.  Seismic absorption compensation: A least squares inverse scheme , 2007 .

[16]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[17]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[18]  Sanyi Yuan,et al.  Sparse reflectivity inversion for nonstationary seismic data , 2014 .

[19]  Ali Gholami Semi-blind nonstationary deconvolution: Joint reflectivity and Q estimation , 2015 .

[20]  Jingnan Li,et al.  Q factor estimation based on the method of logarithmic spectral area difference , 2015 .

[21]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[22]  I. Morozov,et al.  Taxonomy of Q , 2014 .

[23]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[24]  Chuanhui Li,et al.  A new method for interval Q-factor inversion from seismic reflection data , 2015 .

[25]  D. Schmitt,et al.  Measuring velocity dispersion and attenuation in the exploration seismic frequency band , 2009 .

[26]  Y. L. Gonidec,et al.  Fractional integration of seismic wavelets in anelastic media to recover multiscale properties of impedance discontinuities , 2018 .

[27]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[28]  Song Jin,et al.  Nonstretching normal-moveout correction using a dynamic time warping algorithm , 2017 .

[29]  Felix J. Herrmann,et al.  Curvelet-based migration preconditioning and scaling , 2009 .

[30]  M. Bano Q-phase compensation of seismic records in the frequency domain , 1996, Bulletin of the Seismological Society of America.

[31]  G. Tang,et al.  Sparse reflectivity inversion for nonstationary seismic data with surface-related multiples: Numerical and field-data experiments , 2017 .

[32]  Jingnan Li,et al.  Reflectivity inversion for attenuated seismic data: Physical modeling and field data experiments , 2016 .

[33]  G. Tang,et al.  Stable and efficient Q-compensated least-squares migration with compressive sensing, sparsity-promoting, and preconditioning , 2017 .

[34]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[35]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[36]  Wagner Moreira Lupinacci,et al.  A combined time-frequency filtering strategy for Q-factor compensation of poststack seismic data , 2017 .

[37]  Walter E. Medeiros,et al.  Estimating quality factor from surface seismic data: A comparison of current approaches , 2011 .

[38]  Jingnan Li,et al.  An improved Q estimation approach: the weighted centroid frequency shift method , 2016 .

[39]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[40]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[41]  Igor B. Morozov,et al.  Geometrical attenuation, frequency dependence of Q, and the absorption band problem , 2008 .

[42]  Mirko van der Baan,et al.  Bandwidth enhancement: Inverse Q filtering or time-varying Wiener deconvolution? , 2012 .

[43]  H. Gu,et al.  Q-compensated acoustic impedance inversion of attenuated seismic data: Numerical and field-data experiments , 2018, GEOPHYSICS.

[44]  Wei Huang,et al.  Absorption decomposition and compensation via a two-step scheme , 2015 .

[45]  Yangkang Chen,et al.  L1−2 minimization for exact and stable seismic attenuation compensation , 2018 .

[46]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[47]  Wagner Moreira Lupinacci,et al.  L1 norm inversion method for deconvolution in attenuating media , 2013 .