Multi-pass classical vs. quantum strategies in lossy phase estimation

The use of classical multiple-pass approach for phase estimation which mimics the behavior of the N00N states, is compared with quantum techniques. It is shown that in the presence of losses its performance is significantly worse than the one of the optimal quantum strategy.

[1]  Mohan Sarovar,et al.  Optimal estimation of one-parameter quantum channels , 2004 .

[2]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[3]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  W. Marsden I and J , 2012 .

[5]  Kimble,et al.  Precision measurement beyond the shot-noise limit. , 1987, Physical review letters.

[6]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[7]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[8]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[9]  Barry C. Sanders,et al.  Photon-number superselection and the entangled coherent-state representation , 2003 .

[10]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[11]  Sumanth Kaushik,et al.  Loss-induced limits to phase measurement precision with maximally entangled states , 2007 .

[12]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[13]  C. Helstrom Quantum detection and estimation theory , 1969 .

[14]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[15]  B. Yurke,et al.  Squeezed-light-enhanced polarization interferometer. , 1987, Physical review letters.

[16]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[17]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[18]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[19]  Y. Weinstein,et al.  Use of maximally entangled N-photon states for practical quantum interferometry , 2008 .

[20]  Animesh Datta,et al.  On decoherence in quantum clock synchronization , 2006 .

[21]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.