ganglionburst activity in motoneurons of crab cardiac Characterization of inward currents and channels

You might find this additional info useful...This article cites€69 articles, 44 of which you can access for free at: http://jn.physiology.org/content/110/1/42.full#ref-list-1This article has been cited by€1 other HighWire-hosted articles: http://jn.physiology.org/content/110/1/42#cited-by Updated information and services including high resolution figures, can be found at: http://jn.physiology.org/content/110/1/42.fullAdditional material and information about Journal of Neurophysiology can be found at: http://www.the-aps.org/publications/jnThis information is current as of July 3, 2013.

[1]  Joseph L. Ransdell,et al.  Correlated Levels of mRNA and Soma Size in Single Identified Neurons: Evidence for Compartment-specific Regulation of Gene Expression , 2010, Front. Mol. Neurosci..

[2]  Jan-Marino Ramirez,et al.  Differential Contribution of Pacemaker Properties to the Generation of Respiratory Rhythms during Normoxia and Hypoxia , 2004, Neuron.

[3]  Eve Marder,et al.  Correlations in Ion Channel mRNA in Rhythmically Active Neurons , 2009, PloS one.

[4]  H. Yoshimura The potential of caffeine for functional modification from cortical synapses to neuron networks in the brain. , 2005, Current neuropharmacology.

[5]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[6]  D. Schulz,et al.  Cell-specific patterns of alternative splicing of voltage-gated ion channels in single identified neurons , 2010, Neuroscience.

[7]  Transient and Big Are Key Features of an Invertebrate T-type Channel (LCav3) from the Central Nervous System of Lymnaea stagnalis* , 2010, The Journal of Biological Chemistry.

[8]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[9]  D. Schulz,et al.  Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons. , 2010, Journal of neurophysiology.

[10]  L. Salkoff,et al.  Sodium-Activated Potassium Channels Are Functionally Coupled to Persistent Sodium Currents , 2012, The Journal of Neuroscience.

[11]  B. Bean,et al.  Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.

[12]  G. Váradi,et al.  Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. , 1993, The Journal of biological chemistry.

[13]  A. Berlind Heterogeneity of motorneuron driver potential properties along the anterior-posterior axis of the lobster cardiac ganglion , 1993, Brain Research.

[14]  D. Friel,et al.  A caffeine‐ and ryanodine‐sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i. , 1992, The Journal of physiology.

[15]  A. Smit,et al.  Expression and Modulation of an Invertebrate Presynaptic Calcium Channel α1 Subunit Homolog* , 2003, Journal of Biological Chemistry.

[16]  D. Friel,et al.  Phase-dependent contributions from Ca2+ entry and Ca2+ release to caffeine-induced [Ca2+]i oscillations in bullfrog sympathetic neurons , 1992, Neuron.

[17]  S. L. Mironov,et al.  Caffeine affects Ca uptake and Ca release from intracellular stores: fura-2 measurements in isolated snail neurones , 1991, Neuroscience Letters.

[18]  L. Kaczmarek,et al.  Modulation of a calcium-sensitive nonspecific cation channel by closely associated protein kinase and phosphatase activities. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Marino DiFranco,et al.  Somatic Ca2+ transients do not contribute to inspiratory drive in preBötzinger Complex neurons , 2008, The Journal of physiology.

[20]  John M. Ball,et al.  Coregulation of Ion Channel Conductances Preserves Output in a Computational Model of a Crustacean Cardiac Motor Neuron , 2010, The Journal of Neuroscience.

[21]  R. Harris-Warrick,et al.  Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. II. Calcium-activated slow inward current. , 1995, Journal of neurophysiology.

[22]  Filip Van Petegem,et al.  Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex , 2005, Nature Structural &Molecular Biology.

[23]  E. Marder,et al.  Variable channel expression in identified single and electrically coupled neurons in different animals , 2006, Nature Neuroscience.

[24]  E. Marder,et al.  Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis , 2007, Journal of Experimental Biology.

[25]  R. Tsien,et al.  Ca2+-sensitive Inactivation and Facilitation of L-type Ca2+ Channels Both Depend on Specific Amino Acid Residues in a Consensus Calmodulin-binding Motif in theα1C subunit* , 2000, The Journal of Biological Chemistry.

[26]  R. Harris-Warrick In: Dynamic Biological Networks: The Stomatogastric Nervous System , 1992 .

[27]  M. E. Wisgirda,et al.  Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K Tazaki,et al.  Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. , 1983, Symposia of the Society for Experimental Biology.

[29]  H. Lux,et al.  Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia. , 1985, Journal of neurophysiology.

[30]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[31]  E. Marder,et al.  Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Mulkey,et al.  Calcium released by photolysis of DM‐nitrophen triggers transmitter release at the crayfish neuromuscular junction. , 1993, The Journal of physiology.

[33]  Jeffrey L. Mendenhall,et al.  Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations , 2009, Proceedings of the National Academy of Sciences.

[34]  B. Ganetzky,et al.  Molecular analysis of the para locus, a sodium channel gene in Drosophila , 1989, Cell.

[36]  P. A. Anderson,et al.  The molecular biology of invertebrate voltage-gated Ca(2+) channels. , 2000, The Journal of experimental biology.

[37]  Zhiqi Liu,et al.  Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Robert J Butera,et al.  Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro. , 2002, Journal of neurophysiology.

[39]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[40]  R. Harris-Warrick,et al.  The localization of two voltage-gated calcium channels in the pyloric network of the lobster stomatogastric ganglion , 2002, Neuroscience.

[41]  D. Hartline,et al.  Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. , 1967, The Journal of experimental biology.

[42]  J. Spafford,et al.  Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery , 2003, Current Opinion in Neurobiology.

[43]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[44]  Bruce R. Johnson,et al.  Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. , 2003, Journal of neurophysiology.

[45]  Consuelo Morgado-Valle,et al.  Respiratory Rhythm An Emergent Network Property? , 2002, Neuron.

[46]  R. Baines,et al.  Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. , 2009, Journal of neurophysiology.

[47]  Joseph L. Ransdell,et al.  Rapid Homeostatic Plasticity of Intrinsic Excitability in a Central Pattern Generator Network Stabilizes Functional Neural Network Output , 2012, The Journal of Neuroscience.

[48]  A. Selverston,et al.  Calcium signaling components of oscillating invertebrate neurons in vitro , 2003, Neuroscience.

[49]  E. Marder,et al.  Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. , 1992, Journal of neurophysiology.

[50]  E. Marder,et al.  A Model Neuron with Activity-Dependent Conductances Regulated by Multiple Calcium Sensors , 1998, The Journal of Neuroscience.

[51]  J. A. Hayes,et al.  A ‘group pacemaker’ mechanism for respiratory rhythm generation , 2008, The Journal of physiology.

[52]  A. Selverston,et al.  Evidence for a persistent Na+ conductance in neurons of the gastric mill rhythm generator of spiny lobsters. , 1997, The Journal of experimental biology.

[53]  K. Tazaki,et al.  Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[54]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[55]  K. Tazaki,et al.  Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster (Homarus americanus). , 1986, Journal of neurophysiology.

[56]  R M Harris-Warrick,et al.  Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. , 1995, Journal of neurophysiology.

[57]  P. Sah Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  Ke Dong,et al.  Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. , 2008, Insect biochemistry and molecular biology.

[59]  D. Hartline,et al.  Graded synaptic transmission between identified spiking neurons. , 1983, Journal of neurophysiology.

[60]  W. Gerwick,et al.  Bidirectional influence of sodium channel activation on NMDA receptor–dependent cerebrocortical neuron structural plasticity , 2012, Proceedings of the National Academy of Sciences.

[61]  K Tazaki,et al.  Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. , 1990, Journal of neurophysiology.

[62]  J V Sanchez-Andres,et al.  Calcium current and inactivation in identified neurons in Hermissenda crassicornis. , 1994, Journal of neurophysiology.

[63]  L. D. Partridge,et al.  Calcium-activated non-specific cation channels , 1988, Trends in Neurosciences.

[64]  A. Smit,et al.  In vitro characterization of L-type calcium channels and their contribution to firing behavior in invertebrate respiratory neurons. , 2006, Journal of neurophysiology.

[65]  Jean-Marc Goaillard,et al.  Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression , 2007, Proceedings of the National Academy of Sciences.

[66]  K. Graubard,et al.  Pharmacologically and functionally distinct calcium currents of stomatogastric neurons. , 1998, Journal of neurophysiology.

[67]  I. Cooke,et al.  Reliable, Responsive Pacemaking and Pattern Generation With Minimal Cell Numbers: the Crustacean Cardiac Ganglion , 2002, The Biological Bulletin.

[68]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.