The confined hydrogen atom with a moving nucleus

We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped at the centre of the box. The present approach is valid for strong confinement and resembles the well-known treatment of the helium atom with clamped nucleus.

[1]  A. H. Zimerman,et al.  Quantum bouncer in a closed court , 1981 .

[2]  Francisco M. Fernández,et al.  Introduction to Perturbation Theory in Quantum Mechanics , 2000 .

[3]  J. L. Marín,et al.  On the harmonic oscillator inside an infinite potential well , 1988 .

[4]  V. Arnold Introduction to perturbation theory , 1989 .

[5]  W. Wilcox A formula for energy displacements for the confined hydrogen atom , 1989 .

[6]  F. Fernández,et al.  One-dimensional oscillator in a box , 2009 .

[7]  Electron Eigenstates in Uniform Magnetic Fields , 1969 .

[8]  D. Berman Boundary effects in quantum mechanics , 1991 .

[9]  M. Glasser,et al.  Shooting for the stars: The spherically confined H-atom redux , 2003 .

[10]  David Djajaputra,et al.  Hydrogen atom in a spherical well: linear approximation , 1999 .

[11]  E. Hylleraas The Schrödinger Two-Electron Atomic Problem , 1964 .

[12]  F. L. Pilar,et al.  Elementary Quantum Chemistry , 1968 .

[13]  G. Arteca,et al.  Approximate calculation of physical properties of enclosed central field quantum systems , 1984 .

[14]  A. Rau,et al.  Confined One Dimensional Harmonic Oscillator as a Two-Mode System , 2005, math-ph/0512019.

[15]  G. Campoy,et al.  Einstein coefficients and dipole moments for the asymmetrically confined harmonic oscillator , 2001 .

[16]  H. León,et al.  Energy spectrum of a confined two-dimensional particle in an external magnetic field , 2000 .

[17]  J. L. Marín,et al.  Analysis of asymmetric confined quantum systems by the direct variational method , 1995 .

[18]  G. Barton,et al.  The influence of distant boundaries on quantum mechanical energy levels , 1990 .

[19]  S. Yngve The compressed hydrogen atom , 1986 .

[20]  J. L. Marín,et al.  On the use of direct variational methods to study confined quantum systems , 1991 .