Characteristics of gas‐assisted focused ion beam etching

Gas‐assisted etching with a finely focused ion beam has been studied. The presence of a reactive gas, in this case Cl2, results in an enhanced etch rate compared to the rate for sputtering for many materials, including Si, Al, and GaAs. Other advantages over sputtering are the absence of redeposited material and the high etch selectivity possible with some material combinations, which has been exploited in the etching of microstructures. In some applications of this technique, a protective layer of low etch rate material is used over the substrate to improve the quality of the etched structure. The characteristics of the etching process have been studied with variation in the scan speed, gas flux, and current density into the scanned area. In general, a high scan speed, high gas flux, and low current density were found to give the maximum enhancement in the etch rate over sputtering. The application of these results to etching over a wide range of experimental conditions is discussed, to give a basis for ...