Efficient computation of phi-functions in exponential integrators

Abstract A crucial point for the computational efficiency of the exponential-type integrators for differential equations is the effective evaluation of the integrals involving matrix exponential called phi-functions. Focusing on exponential integrators for differential equations of small dimensions, for which the Krylov-based approximations for the phi-functions are not viable, in this article refined algorithms are introduced for speeding up both, the evaluation of several phi-functions simultaneously and the computation of a linear combination of phi-functions times matrices. The algorithms are derived from a meticulous approximation to the exponential of certain partitioned matrix by adapting the conventional Pade method to the special structure of this matrix. Numerical simulations are provided to evaluate the performance of the proposed algorithms and compare them with others in the literature.

[1]  Juan C. Jiménez,et al.  Convergence rate of strong Local Linearization schemes for stochastic differential equations with additive noise , 2011, BIT Numerical Mathematics.

[2]  David A. Pope An exponential method of numerical integration of ordinary differential equations , 1963, CACM.

[3]  Juan C. Jiménez,et al.  Local Linearization - Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems , 2012, Math. Comput. Model..

[4]  Juan C. Jiménez,et al.  A higher order local linearization method for solving ordinary differential equations , 2007, Appl. Math. Comput..

[5]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..

[6]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Juan C. Jiménez,et al.  Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations , 2006, International Conference on Computational Science.

[9]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[10]  Mayya Tokman,et al.  KIOPS: A fast adaptive Krylov subspace solver for exponential integrators , 2018, J. Comput. Phys..

[11]  Juan C. Jiménez,et al.  Local Linearization Method for Numerical Integration of Delay Differential Equations , 2006, SIAM J. Numer. Anal..

[12]  Juan C. Jiménez,et al.  Locally Linearized Runge Kutta method of Dormand and Prince , 2012, Appl. Math. Comput..

[13]  Juan Carlos Jimenez,et al.  A simple algebraic expression to evaluate the local linearization schemes for stochastic differential equations , 2002, Appl. Math. Lett..

[14]  T. Ozaki A local linearization approach to nonlinear filtering , 1993 .

[15]  J. C. Jimenez,et al.  Rate of convergence of Local Linearization schemes for random differential equations , 2009 .

[16]  Peter E. Kloeden,et al.  The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds , 2011, J. Comput. Appl. Math..

[17]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[18]  Juan C. Jiménez,et al.  Rate of convergence of local linearization schemes for initial-value problems , 2005, Appl. Math. Comput..

[19]  Juan C. Jiménez,et al.  Dynamic properties of the local linearization method for initial-value problems , 2002, Appl. Math. Comput..

[20]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[21]  Håvard Berland,et al.  NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .

[22]  Alexander Ostermann,et al.  Exponential multistep methods of Adams-type , 2011 .

[23]  Tohru Ozaki The Local Linearization Filter with Application to Nonlinear System Identifications , 1994 .

[24]  Awad H. Al-Mohy,et al.  A New Scaling and Squaring Algorithm for the Matrix Exponential , 2009, SIAM J. Matrix Anal. Appl..

[25]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[26]  J. C. Jimenez,et al.  Convergence rate of strong Local Linearization schemes for stochastic differential equations with additive noise , 2012 .

[27]  G. Lord,et al.  Stochastic exponential integrators for finite element discretization of SPDEs for multiplicative and additive noise , 2011, 1103.1986.

[28]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[29]  L. M. Pedroso,et al.  Letter to the Editor: Computing multiple integrals involving matrix exponentials , 2008 .

[30]  Rolando J. Biscay,et al.  The Local Linearization Method for Numerical Integration of Random Differential Equations , 2005 .

[31]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[32]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[33]  K. Burrage,et al.  A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems , 2014, BIT Numerical Mathematics.

[34]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[35]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .