On the weight sparsity of multilayer perceptrons

Approximating and representing a process, a function, or a system with an adaptive parametric model constitutes a major part of current machine learning research. An important characteristic of these models is parameter sparsity, an indicator of how succintly a model can codify fundamental properties of the approximated function. This paper investigates the sparsity patterns of a multilayer perceptron netwrok trained to mount a man-on-the-middle attack on the DES symmetric cryptosystem. The notions of absolute and effective synaptic weight sparsity are introduced and their importance to network learning procedure is explained. Finally, the results from the training of the actual multilayer perceptron are outlined and discussed. In order to promote reproducible research, the MATLAB network implementation has been posted in GitHub.

[1]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[2]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[3]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[4]  Joe Kilian,et al.  How to Protect DES Against Exhaustive Key Search (an Analysis of DESX) , 2015, Journal of Cryptology.

[5]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[6]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[7]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[8]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[9]  Perambur S. Neelakanta,et al.  INFORMATION-THEORETIC ASPECTS of NEURAL NETWORKS , 1999 .

[10]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[11]  Anas N. Al-Rabadi,et al.  A comparison of modified reconstructability analysis and Ashenhurst‐Curtis decomposition of Boolean functions , 2004 .

[12]  Erik Winfree,et al.  On applying molecular computation to the data encryption standard , 1999, DNA Based Computers.

[13]  Jim Webber,et al.  Graph Databases: New Opportunities for Connected Data , 2013 .

[14]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Anand Rajaraman,et al.  Mining of Massive Datasets , 2011 .

[16]  Mark Beale,et al.  Neural Network Toolbox™ User's Guide , 2015 .

[17]  Ya-Yun Wang,et al.  Databasing the Brain: From Data to Knowledge (Neuroinformatics), S.H. Koslow, S. Subramaniam (Eds.). Wiley-Liss/John Wiley & Sons (2005), 523 pp., Price: £79.99, ISBN: 0-471-30921-4 , 2010 .

[18]  Vasileios Megalooikonomou,et al.  Mining complex high-order datasets , 2010 .

[19]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[20]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[21]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[22]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[23]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[24]  Richard J. Lipton,et al.  Making DNA computers error resistant , 1996, DNA Based Computers.

[25]  Onofrio Panzarino,et al.  Learning Cypher , 2014 .

[26]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[27]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[28]  Eli Biham,et al.  Differential Cryptanalysis of the Data Encryption Standard , 1993, Springer New York.

[29]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[30]  Örjan Ekeberg,et al.  Large-Scale Modeling – a Tool for Conquering the Complexity of the Brain , 2008, Frontiers Neuroinformatics.

[31]  Richard J. Lipton,et al.  Breaking DES using a molecular computer , 1995, DNA Based Computers.

[32]  R. Feynman There’s plenty of room at the bottom , 2011 .