Saturable absorption in detonation nanodiamond dispersions

Abstract. We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a light-induced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking.

[1]  Dingyuan Tang,et al.  Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. , 2009, Optics express.

[2]  V. Kuznetsov,et al.  Laser modification of optical properties of a carbon nanotube suspension in dimethylformamide , 2013 .

[3]  Shinji Yamashita,et al.  Short pulse fiber lasers mode-locked by carbon nanotubes and graphene , 2014 .

[4]  V. Bondar,et al.  Concentration dependence of the optical limiting and nonlinear light scattering in aqueous suspensions of detonation nanodiamond clusters , 2014 .

[5]  D. Hanna,et al.  Principles of Lasers , 2011 .

[6]  Yuri Svirko,et al.  Polarization-sensitive nonlinear light scattering and optical limiting in aqueous suspension of detonation nanodiamonds , 2014 .

[7]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[8]  F Rotermund,et al.  Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. , 2013, Optics letters.

[9]  Yuri Svirko,et al.  Size effect on the optical limiting in suspensions of detonation nanodiamond clusters. , 2013, Applied optics.

[10]  A. E. Aleksenskii,et al.  Optical properties of detonation nanodiamond hydrosols , 2012 .

[11]  V. Bondar,et al.  Colloidal stability of modified nanodiamond particles , 2009 .

[12]  A. Ferrari,et al.  Ultrafast lasers mode-locked by nanotubes and graphene , 2012 .

[13]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[14]  A. Vul,et al.  Deagglomeration of Detonation Nanodiamonds , 2011 .

[15]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[16]  Wei Chen,et al.  Giant two-photon absorption in bilayer graphene. , 2011, Nano letters.

[17]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[18]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[19]  Gennady M Mikheev,et al.  Near-IR nonlinear optical filter for optical communication window. , 2015, Applied optics.

[20]  Liejia Qian,et al.  Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited] , 2012 .

[21]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[22]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[23]  Alexey P. Puzyr,et al.  Nanodiamonds for biological investigations , 2004 .