Multi-scale modeling and rendering of granular materials

We address the problem of modeling and rendering granular materials---such as large structures made of sand, snow, or sugar---where an aggregate object is composed of many randomly oriented, but discernible grains. These materials pose a particular challenge as the complex scattering properties of individual grains, and their packing arrangement, can have a dramatic effect on the large-scale appearance of the aggregate object. We propose a multi-scale modeling and rendering framework that adapts to the structure of scattered light at different scales. We rely on path tracing the individual grains only at the finest scale, and---by decoupling individual grains from their arrangement---we develop a modular approach for simulating longer-scale light transport. We model light interactions within and across grains as separate processes and leverage this decomposition to derive parameters for classical radiative transport, including standard volumetric path tracing and a diffusion method that can quickly summarize the large scale transport due to many grain interactions. We require only a one-time precomputation per exemplar grain, which we can then reuse for arbitrary aggregate shapes and a continuum of different packing rates and scales of grains. We demonstrate our method on scenes containing mixtures of tens of millions of individual, complex, specular grains that would be otherwise infeasible to render with standard techniques.

[1]  Stephen Lin,et al.  Modeling and rendering of quasi-homogeneous materials , 2005, ACM Trans. Graph..

[2]  H. Shum,et al.  Shell texture functions , 2004, SIGGRAPH 2004.

[3]  B. Uscinski,et al.  The multiple scattering of waves in irregular media. II. Spatial autocorrelation functions , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[5]  Eugene d'Eon,et al.  Rigorous Asymptotic and Moment-Preserving Diffusion Approximations for Generalized Linear Boltzmann Transport in Arbitrary Dimension , 2013, 1312.1412.

[6]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[7]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[8]  David B. McWhorter,et al.  Ground-water hydrology and hydraulics , 1977 .

[9]  Greg Humphreys,et al.  Physically Based Rendering, Second Edition: From Theory To Implementation , 2010 .

[10]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[11]  P. Levitz,et al.  Knudsen diffusion and excitation transfer in random porous media , 1993 .

[12]  Kenneth E. Torrance,et al.  A hybrid monte carlo method for accurate and efficient subsurface scattering , 2005, EGSR '05.

[13]  G. Baranoski,et al.  A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. , 2007, Optics express.

[14]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[15]  Steve Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, ACM Trans. Graph..

[16]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[17]  Craig Donner,et al.  Light diffusion in multi-layered translucent materials , 2005, SIGGRAPH 2005.

[18]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Francisco J. Serón,et al.  Physically-based simulation of rainbows , 2012, TOGS.

[20]  Fabrice Neyret,et al.  Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures , 1998, IEEE Trans. Vis. Comput. Graph..

[21]  Arno Zinke,et al.  Ibero-american Symposium on Computer Graphics -siacg (2006) Global Illumination for Fiber Based Geometries , 2022 .

[22]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[23]  Francisco J. Serón,et al.  A survey on participating media rendering techniques , 2005, The Visual Computer.

[24]  D. Tang,et al.  Ground water hydrology and hydraulics: David B. McWhorter and Daniel K. Sunada Water Resources Publications, Fort Collins, 290 pp. , 1979 .

[25]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[26]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[27]  Eric Galin,et al.  Procedural Generation of Rock Piles using Aperiodic Tiling , 2009, Comput. Graph. Forum.

[28]  Dominique Baillis,et al.  Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach , 2010 .

[29]  Reinhard Klein,et al.  A Volumetric Approach to Predictive Rendering of Fabrics , 2011, EGSR '11.

[30]  Per H. Christensen,et al.  Multiresolution radiosity caching for global illumination in movies , 2012, SIGGRAPH Talks.

[31]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[32]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[33]  S. Torquato Random Heterogeneous Materials , 2002 .

[34]  Knut Stamnes,et al.  Geometrical-optics code for computing the optical properties of large dielectric spheres. , 2003, Applied optics.

[35]  Dominique Baillis,et al.  Radiative Transfer in Dispersed Media: Comparison Between Homogeneous Phase and Multiphase Approaches , 2010 .

[36]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[37]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[38]  Massoud Kaviany,et al.  Modelling radiative heat transfer in packed beds , 1992 .

[39]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, ACM Trans. Graph..

[40]  Jirí Filip,et al.  Bidirectional Texture Function Modeling: A State of the Art Survey , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Edward W. Larsen,et al.  Chord length distributions in binary stochastic media in two and three dimensions , 2006 .

[42]  Holly E. Rushmeier,et al.  Inverse bi-scale material design , 2013, ACM Trans. Graph..

[43]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[44]  Yaron Danon,et al.  IMPLEMENTATION OF CHORD LENGTH SAMPLING FOR TRANSPORT THROUGH A BINARY STOCHASTIC MIXTURE , 2002 .

[45]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[46]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[47]  Arno Zinke,et al.  Light Scattering from Filaments , 2007, IEEE Transactions on Visualization and Computer Graphics.

[48]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[49]  M. Bruhns,et al.  Sugar technologists manual: Chemical and physical data for sugar manufacturers and users. , 1995 .

[50]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[51]  Jean-Jacques Greffet,et al.  Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[53]  Fabrice Neyret,et al.  A Survey of Nonlinear Prefiltering Methods for Efficient and Accurate Surface Shading , 2012, IEEE Transactions on Visualization and Computer Graphics.

[54]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[55]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[56]  Shuang Zhao,et al.  Modular flux transfer , 2013, ACM Trans. Graph..

[57]  Arthur W. Rose,et al.  Porous media: Fluid transport and pore structure (2nd Ed.) , 1993 .

[58]  M. Dixmier,et al.  Une nouvelle description des empilements aléatoires et des fluides denses , 1978 .

[59]  Holly Rushmeier,et al.  Realistic image synthesis for scenes with radiatively participating media , 1988 .

[60]  Jung Hong Chuang Level of Detail for 3D Graphics , 2002 .

[61]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[62]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[63]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.