Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling

Fundamental advances in solid-state ionics for energy conversion and storage are crucial in addressing the global challenge of cleaner energy sources. This review aims to demonstrate the valuable role that modern computational techniques now play in providing deeper fundamental insight into materials for solid oxide fuel cells and rechargeable lithium batteries. The scope of contemporary work is illustrated by studies on topical materials encompassing perovskite-type proton conductors, gallium oxides with tetrahedral moieties, apatite-type silicates, and lithium iron phosphates. Key fundamental properties are examined, including mechanisms of ion migration, dopant-defect association, and surface structures and crystal morphologies.

[1]  J. Kilner Fast oxygen transport in acceptor doped oxides , 2000 .

[2]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[3]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[4]  Peter Y. Zavalij,et al.  The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications , 2008 .

[5]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[6]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[7]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[8]  K. Knight,et al.  Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. , 2007, Nature materials.

[9]  D. Bernache-Assollant,et al.  Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites , 2008 .

[10]  M. Islam,et al.  Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5 , 2008 .

[11]  G. C. Mather,et al.  Defect and Dopant Properties of the SrCeO3-Based Proton Conductor , 2005 .

[12]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[13]  C. Fisher,et al.  Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour , 2008 .

[14]  M. Islam,et al.  Solid state 29Si NMR studies of apatite-type oxide ion conductors , 2006 .

[15]  P. Slater,et al.  A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 , 2001 .

[16]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[17]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[18]  M. Islam,et al.  Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors. , 2004, Dalton transactions.

[19]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[20]  Jean-Marie Tarascon,et al.  Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) Electrode Materials , 2005 .

[21]  Marca M. Doeff,et al.  Carbon Surface Layers on a High-Rate LiFePO4 , 2006 .

[22]  C. Karmonik,et al.  Quasielastic neutron scattering study of proton diffusion in SrCe0.95Yb0.05H0.02O2.985 , 1995 .

[23]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[24]  Peter R. Slater,et al.  Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26 , 2003 .

[25]  C. R. A. Catlow,et al.  Computer modelling in inorganic crystallography , 1997 .

[26]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[27]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[28]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[29]  Theme issue: new energy materials , 2007 .

[30]  Y. Larring,et al.  Hydrogen in oxides. , 2004, Dalton transactions.

[31]  Arumugam Manthiram,et al.  Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries , 2008 .

[32]  H. Yoshioka,et al.  Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions , 2008 .

[33]  T. Norby,et al.  Proton conduction in rare-earth ortho-niobates and ortho-tantalates , 2006 .

[34]  R. Phillips,et al.  Structural and electrical characterisation of SrCe1−xYxOξ , 1999 .

[35]  M. Islam,et al.  Atomic-Scale Insight into LaFeO3 Perovskite: Defect Nanoclusters and Ion Migration , 2008 .

[36]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[37]  J. Gale,et al.  Proton migration and defect interactions in the CaZrO3 orthorhombic perovskite : A quantum mechanical study , 2001 .

[38]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[39]  M. Armand,et al.  Building better batteries , 2008, Nature.

[40]  Yuki Kondo,et al.  Effects of cation- or oxide ion-defect on conductivities of apatite-type La–Ge–O system ceramics , 2004 .

[41]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. C. Mather,et al.  Strontium superstoichiometry and defect structure of SrCeO3 perovskite. , 2008, Inorganic chemistry.

[44]  Si-Young Choi,et al.  Atomic-scale visualization of antisite defects in LiFePO4. , 2008, Physical review letters.

[45]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  M. Islam,et al.  Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite , 2004 .

[48]  K. Knight,et al.  High-Temperature Study of Octahedral Cation Exchange in Olivine by Neutron Powder Diffraction , 1996, Science.

[49]  L. León-Reina,et al.  Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites , 2007 .

[50]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[51]  L. León-Reina,et al.  Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes , 2004 .

[52]  M. Islam,et al.  Investigation of proton conduction in La1-xBa1+xGaO4-x/2 and La1-xSr2+xGaO5-x/2 , 2005 .

[53]  E. Wachsman,et al.  Composite Cathodes for Proton Conducting Electrolytes , 2009 .

[54]  M. Islam,et al.  Atomic-scale mechanistic features of oxide ion conduction in apatite-type germanates. , 2008, Chemical communications.

[55]  M. Islam,et al.  Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties , 2007 .

[56]  Linda F. Nazar,et al.  Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 , 2007 .

[57]  T. Norby Fast oxygen ion conductors—from dopedto ordered systems , 2001 .