Many Valued Algebraic Structures as the Measures for Comparison

In this chapter we will study properties and usability of basic many valued structures called t-norms, t-conorms, implications and equivalences in comparison tasks. We will show how these measures can be aggregated with generalized mean and what kind of measures for comparison can be achieved from this procedure. New classes for comparison measures are suggested, which are combination measure based on the use of t-norms and t-conorms and pseudo equivalence measures based on S-type implications. In experimental part of this chapter we will show how some of the comparison measures presented here work in comparison task. For comparison task we use classification. We show by comparison to results that can be achieved through some known public domain classifier results that our classification results are highly competitive.

[1]  E. Shortliffe Computer-based medical consultations: mycin (elsevier north holland , 1976 .

[2]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[3]  Gleb Beliakov,et al.  How to build aggregation operators from data , 2003, Int. J. Intell. Syst..

[4]  K. Saastamoinen,et al.  On the use of generalized mean with t-norms and t-conorms , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[5]  S. K. Wong,et al.  Comparison of the probabilistic approximate classification and the fuzzy set model , 1987 .

[6]  D. Coomans,et al.  Potential pattern recognition in chemical and medical decision making , 1986 .

[7]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[8]  Mikko Valtonen,et al.  Performance Characteristics of an Axial-Flux Solid-Rotor-Core Induction Motor , 2007 .

[9]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[10]  Kalle Saastamoinen,et al.  Defining athlete's anaerobic and aerobic thresholds by using similarity measures and differential evolution , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[11]  Ludmila I. Kuncheva,et al.  How good are fuzzy If-Then classifiers? , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[12]  Claudiu Cristian Botar-Jid Selective catalytic reduction of nitrogen oxides with ammonia in forced unsteady state reactors - Case based reasoning and mathematical model simulation reasoning , 2007 .

[13]  Sankar K. Pal,et al.  Fuzzy Mathematical Approach to Pattern Recognition , 1986 .

[14]  K. Saastamoinen,et al.  Medical Data Classification using Logical Similarity Based Measures , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[15]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[16]  Timo Kärri,et al.  Timing of Capacity Change: Models for Capital Intensive Industry , 2007 .

[17]  Pasi Luukka,et al.  Comparison of the use of different similarities based on T-norms in the classification tasks , 2003, EUSFLAT Conf..

[18]  Martine De Cock,et al.  Why fuzzy -equivalence relations do not resolve the Poincaré paradox, and related issues , 2003, Fuzzy Sets Syst..

[19]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[20]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[21]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[22]  Pasi Luukka,et al.  A classifier based on the fuzzy similarity in the Lukasiewicz structure with different metrics , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[23]  Kalle Saastamoinen,et al.  Tuning the Parameters for the Decision Making System in Order to Define Athlete’s Aerobic and Anaerobic Thresholds , 2004 .

[24]  Pasi Luukka,et al.  A classifier based on the maximal fuzzy similarity in the generalized Lukasiewicz-structure , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[25]  P. Hájek Fuzzy logic and arithmetical hierarchy , 1995 .

[26]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[27]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[28]  K. Saastamoinen On New General Class of 3π- Uninorms , 2006, 2006 IEEE International Conference on Computational Cybernetics.

[29]  E. Trillas,et al.  in Fuzzy Logic , 2002 .

[30]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[31]  Richard Bellman,et al.  On the Analytic Formalism of the Theory of Fuzzy Sets , 1973, Inf. Sci..

[32]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[33]  L. Valverde On the structure of F-indistinguishability operators , 1985 .

[34]  Léon Bottou,et al.  Local Algorithms for Pattern Recognition and Dependencies Estimation , 1993, Neural Computation.

[35]  Jun Huang Analysis of Industrial Granular Flow Applications by Using Advanced Collision Models , 2007 .

[36]  A. D. Morgan Formal Logic: Or, The Calculus of Inference, Necessary and Probable , 2002 .

[37]  K. Saastamoinen Semantic study of the use of parameterized S implications and equivalences in comparison , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[38]  Tai Kang,et al.  Modifications of Bellman-Giertz's theorem , 1998, Fuzzy Sets Syst..

[39]  Janne Kinnunen,et al.  Direct-on-line axial flux permanent magnet synchronous generator static and dynamic performance , 2007 .

[40]  L. Valverde,et al.  An Inquiry into Indistinguishability Operators , 1984 .

[41]  Tuomo Aho Electromagnetic Design of a Solid Steel Rotor Motor for Demanding Operation Environments , 2007 .

[42]  Peter W. Eklund,et al.  A Performance Survey of Public Domain Supervised Machine Learning Algorithms , 2007 .

[43]  Quantum transport phenomena and shallow impurity states in CdSb , 2007 .

[44]  C. Peirce On the Algebra of Logic: A Contribution to the Philosophy of Notation , 1885 .

[45]  Ramesh C. Jain,et al.  Similarity measures for image databases , 1995, Electronic Imaging.

[46]  Yu Yandong Triangular norms and TNF-sigma-algebras , 1985 .

[47]  J. Keul,et al.  The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training , 1979, European Journal of Applied Physiology and Occupational Physiology.

[48]  Antti Kärkkäinen,et al.  Dynamic Simulations of Rotors during Drop on Retainer Bearings , 2007 .

[49]  J. Fodor Nilpotent minimum and related connectives for fuzzy logic , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[50]  Philippe Smets,et al.  Implication in fuzzy logic , 1987, Int. J. Approx. Reason..

[51]  K. Wasserman,et al.  DETECTING THE THRESHOLD OF ANAEROBIC METABOLISM IN CARDIAC PATIENTS DURING EXERCISE. , 1964, The American journal of cardiology.

[52]  David H. Krantz,et al.  The dimensional representation and the metric structure of similarity data , 1970 .

[53]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[54]  Hugh Mccoll The Calculus of Equivalent Statements. (Fourth Paper.) , 1896 .

[55]  Radko Mesiar,et al.  Fitting Generated Aggregation Operators To Empirical Data , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[56]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[57]  R. Mesiar,et al.  Triangular norms: Basic notions and properties , 2005 .

[58]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[59]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[60]  A. Tuppura Market entry order and competitive advantage of the firm , 2007 .

[61]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[63]  Jorma K. Mattila On Lukasiewicz Modifier Logic , 2005, J. Adv. Comput. Intell. Intell. Informatics.

[64]  Gleb Beliakov,et al.  Definition of general aggregation operators through similarity relations , 2000, Fuzzy Sets Syst..

[65]  Robert Lowen Fuzzy set theory - basic concepts, techniques and bibliography , 1996 .

[66]  Tatjana Karpova,et al.  Aqueous photocatalytic oxidation of steroid estrogens , 2007 .

[67]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[68]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[69]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[70]  W. James,et al.  The Principles of Psychology. , 1983 .

[71]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[72]  Sukhamay Kundu,et al.  Fuzzy logic or Lukasiewicz logic: A clarification , 1998, Fuzzy Sets Syst..

[73]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[75]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[76]  R. Yager On a general class of fuzzy connectives , 1980 .

[77]  Sadaaki Miyamoto,et al.  Fuzzy Sets in Information Retrieval and Cluster Analysis , 1990, Theory and Decision Library.

[78]  Giangiacomo Gerla,et al.  Fuzzy subgroups and similarities , 1999, Soft Comput..

[79]  Hans Bandemer,et al.  Fuzzy Data Analysis , 1992 .

[80]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[81]  Fumitaka Kimura,et al.  On the bias of Mahalanobis distance due to limited sample size effect , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[82]  Frank Klawonn,et al.  Similarity in fuzzy reasoning , 1995 .

[83]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[84]  A. Tversky Features of Similarity , 1977 .

[85]  Heikki Purhonen Experimental thermal hydraulic studies on the enhancement of safety of LWRs , 2007 .

[86]  Pasi Luukka,et al.  Testing continuous t-norm called Lukasiewicz algebra with different means in classification , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[87]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[88]  O. Shipilova,et al.  Particle transport method for convection-diffusion-reaction problems , 2007 .

[89]  L. N. Stout,et al.  Foundations of fuzzy sets , 1991 .

[90]  Kalle Saastamoinen,et al.  Use of hybrid method in wavelet base selection for signal compression , 2004, SPIE Optics + Photonics.

[91]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[92]  Kalle Saastamoinen,et al.  Fuzzy Logic and Differential Evolution Based Expert System for Defining Top Athlete's Aerobic and Anaerobic Thresholds , 2005, J. Adv. Comput. Intell. Intell. Informatics.

[93]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[94]  Rafal Piotr Jastrzebski,et al.  Design and implementation of FPGA-based LQ control of active magnetic bearings , 2007 .

[95]  Pekka Punnonen Impingement jet cooling of end windings in a high-speed electric machine , 2007 .

[96]  Natalia Nedeoglo Investigation of interaction between native and impurity defects in ZnSe , 2007 .

[97]  Siegfried Gottwald,et al.  Approximate solutions of fuzzy relational equations and a characterization of t-norms that define metrics for fuzzy sets , 1995, Fuzzy Sets Syst..

[98]  I. Burhan Türksen,et al.  Measurement-theoretic justification of connectives in fuzzy set theory , 1995, Fuzzy Sets Syst..

[99]  D. Coomans,et al.  Comparison of Multivariate Discrimination Techniques for Clinical Data— Application to the Thyroid Functional State , 1983, Methods of Information in Medicine.

[100]  Thomas Whalen,et al.  Parameterized R-implications , 2003, Fuzzy Sets Syst..

[101]  Rami Zwick,et al.  Measures of similarity among fuzzy concepts: A comparative analysis , 1987, Int. J. Approx. Reason..

[102]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[103]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[104]  J. Fodor On fuzzy implication operators , 1991 .

[105]  Zhi-Hua Zhou,et al.  NeC4.5: Neural Ensemble Based C4.5 , 2004, IEEE Trans. Knowl. Data Eng..

[106]  W. Pedrycz,et al.  Generalized means as model of compensative connectives , 1984 .