Colossal barocaloric effect achieved by exploiting the amorphous high entropy of solidified polyethylene glycol

[1]  Xuekai Zhang,et al.  Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes , 2022, Nature communications.

[2]  X. Moya,et al.  Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X=Cl, Br) plastic crystals , 2021 .

[3]  B. K. Purohit,et al.  LAPONITE® based hydrogel for cold thermal energy storage application , 2021, Bulletin of Materials Science.

[4]  L. Balicas,et al.  Giant and Reversible Barocaloric Effect in Trinuclear Spin‐Crossover Complex Fe3(bntrz)6(tcnset)6 , 2021, Advanced materials.

[5]  C. Jia,et al.  Understanding colossal barocaloric effects in plastic crystals , 2020, Nature Communications.

[6]  Ji-cai Feng,et al.  General Decomposition Pathway of Organic–Inorganic Hybrid Perovskites through an Intermediate Superstructure and its Suppression Mechanism , 2020, Advanced materials.

[7]  Christopher J. Ellison,et al.  Readily Degradable Aromatic Polyesters from Salicylic Acid. , 2020, ACS macro letters.

[8]  X. Moya,et al.  Reversible and irreversible colossal barocaloric effects in plastic crystals , 2020, Journal of Materials Chemistry A.

[9]  T. Tseng,et al.  In situ TEM investigation of electron beam-induced ultrafast chemical lithiation for charging , 2020 .

[10]  A. Sari,et al.  A cycling study for reliability, chemical stability and thermal durability of polyethylene glycols of molecular weight 2000 and 10000 as organic latent heat thermal energy storage materials , 2019, International Journal of Energy Research.

[11]  C. Cazorla,et al.  Large barocaloric effects in thermoelectric superionic materials , 2019, Physical Review Materials.

[12]  X. Moya,et al.  Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB0.03 , 2019, Advanced materials.

[13]  C. Cazorla Novel mechanocaloric materials for solid-state cooling applications , 2019, Applied Physics Reviews.

[14]  A. Chapoy,et al.  Giant Barocaloric Effect at the Spin Crossover Transition of a Molecular Crystal , 2019, Advanced materials.

[15]  X. Moya,et al.  Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol , 2019, Nature Communications.

[16]  S. Suresh,et al.  Low melt alloy enhanced solid-liquid phase change organic sugar alcohol for solar thermal energy storage , 2018, Journal of Molecular Liquids.

[17]  R. Mole,et al.  Colossal barocaloric effects in plastic crystals , 2018, Nature.

[18]  K. Zaghib,et al.  In Situ TEM Investigation of Electron Irradiation Induced Metastable States in Lithium-Ion Battery Cathodes: Li2FeSiO4 versus LiFePO4 , 2018, ACS Applied Energy Materials.

[19]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[20]  V. Pecharsky,et al.  Caloric effects in ferroic materials , 2018 .

[21]  A. Pathak,et al.  Magnetostructural phase transitions and magnetocaloric effect in (Gd5-xScx)Si1.8Ge2.2 , 2018 .

[22]  X. Moya,et al.  Giant barocaloric effects over a wide temperature range in superionic conductor AgI , 2017, Nature Communications.

[23]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[24]  W. Li,et al.  Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate , 2015, Nature Communications.

[25]  Lars Pilgaard Mikkelsen,et al.  The Elastocaloric Effect: A Way to Cool Efficiently , 2015 .

[26]  L. Bourland Polyethylene terephthalate graft copolymers acting as an interfacial modifier in rubber modified polyethylene terephthalate compounds , 2015 .

[27]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[28]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[29]  S. Hiebler,et al.  Polyethylene Glycol-Sugar Composites as Shape Stabilized Phase Change Materials for Thermal Energy Storage , 2012 .

[30]  Yafei Guo,et al.  Supercooling and Phase Separation of Inorganic Salt Hydrates as PCMs , 2011 .

[31]  J. Lekki,et al.  PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions , 2008 .

[32]  E. Ding,et al.  Crystalline-Amorphous Phase Transition of Poly(ethylene Glycol)/Cellulose Blend , 1995 .

[33]  J. Koenig,et al.  Raman spectra of poly(ethylene glycols) in solution , 1970 .

[34]  H. Matsuura,et al.  Vibrational analysis of molten poly(ethylene glycol) , 1969 .

[35]  H. Tadokoro,et al.  Normal Vibrations of the Polymer Molecules of Helical Conformation. IV. Polyethylene Oxide and Polyethylene‐d4 Oxide , 1964 .

[36]  T. Miyazawa,et al.  Molecular Vibrations and Structure of High Polymers. III. Polarized Infrared Spectra, Normal Vibrations, and Helical Conformation of Polyethylene Glycol , 1962 .

[37]  Koshi Takenaka,et al.  Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.

[38]  F. E. Bailey,et al.  Poly(ethylene oxide) , 1976 .

[39]  W. Davison Infrared spectra and crystallinity. Part III. Poly(ethylene glycol) , 1955 .