Plastome Phylogenetics: 30 Years of Inferences Into Plant Evolution

Abstract From restriction site analyses to whole plastid genome sequences, our understanding of green plant (Viridiplantae; ~ 500,000 extant species) evolutionary relationships over the past three decades has largely been informed by analyses of the plastid genome. The plastid genome has informed studies ranging from population genetics to phylogenetics, the latter ranging from the intraspecific level to studies of all green plants. Diverse portions of the genome ranging from plastid spacers to entire genomes provide valuable data for plant evolutionary biologists. Recent phylogenetic analyses using whole plastid genomes sampled from over 2000 species representing all major groups of green plants have both solidified our understanding of relationships and highlighted the few key nodes in plant evolutionary history that remain unresolved. Likewise, detailed large-scale analyses of plastomes across angiosperms reinforce firmly supported nodes but fail to resolve a handful of remaining questionable relationships. The long history of plastid phylogenetics will serve as a reference point as scientists continue to expand beyond the plastid genome and include more nuclear and mitochondrial data in their analyses. These comparisons are crucial in that recent studies indicate some discordance between nuclear and plastid gene trees both across green plants as a whole and within angiosperms. Rather than being a source of concern, these discordances point to the complex and intriguing one-billion-year evolutionary history of the green plant clade, a clade that is foundational to life on Earth.

[1]  R. Bacilieri,et al.  Chloroplast DNA footprints of postglacial recolonization by oaks. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[3]  Dennis W. Stevenson,et al.  Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales1 , 2010 .

[4]  Hardeep,et al.  Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set , 2006 .

[5]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[6]  E. Conti,et al.  Tribal relationships in Onagraceae: implications from rbcL sequence data , 1993 .

[7]  Douglas E. Soltis,et al.  Choosing an Approach and an Appropriate Gene for Phylogenetic Analysis , 1998 .

[8]  rbcL sequence divergence and phylogenetic relationships in Saxifragaceae sensu lato. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Rieseberg,et al.  Phylogenetic consequences of cytoplasmic gene flow in plants. , 1991 .

[10]  Kate L. Hertweck,et al.  Phylogenetics, divergence times and diversification from three genomic partitions in monocots , 2015 .

[11]  J. Farris,et al.  Simultaneous parsimony jackknife analysis of 2538rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants , 1998, Plant Systematics and Evolution.

[12]  P. Gadek,et al.  Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. , 2000 .

[13]  H. Daniell Production of biopharmaceuticals and vaccines in plants via the chloroplast genome , 2006, Biotechnology journal.

[14]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[15]  M. Clegg,et al.  Evolutionary Analysis of Plant DNA Sequences , 1987, The American Naturalist.

[16]  James F. Smith Phylogenetic Hypotheses for the Monocotyledons Constructed from rbc L Sequence Data , 1993 .

[17]  J. Palmer,et al.  Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Elizabeth A. Kellogg,et al.  An ordinal classification for the families of flowering plants , 1998 .

[19]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[20]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[21]  D. Soltis,et al.  Phylogeny, Classification and Floral Evolution of Water Lilies (Nymphaeaceae; Nymphaeales): A Synthesis of Non-molecular, rbcL, matK, and 18S rDNA Data , 1999 .

[22]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[23]  P. J. Maughan,et al.  Targeted enrichment strategies for next-generation plant biology. , 2012, American journal of botany.

[24]  C. Davis,et al.  Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there , 2014, BMC Biology.

[25]  W. Hennig Grundzüge einer Theorie der phylogenetischen Systematik , 1950 .

[26]  Gregory W. Stull,et al.  A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes , 2013, Applications in plant sciences.

[27]  J. Palmer,et al.  Interfamilial relationships of the Asteraceae: insights from rbcL sequence variation , 1993 .

[28]  D. Soltis,et al.  Chloroplast DNA variation in a wild plant, tolmiea menziesii. , 1989, Genetics.

[29]  Y. Qiu,et al.  Angiosperm phylogeny inferred from sequences of four mitochondrial genes , 2010 .

[30]  Douglas E. Soltis,et al.  Phylogenetic Inference in Saxifragaceae Sensu Stricto and Gilia (Polemoniaceae) Using matK Sequences , 1995 .

[31]  C. Davis,et al.  Massive Mitochondrial Gene Transfer in a Parasitic Flowering Plant Clade , 2013, PLoS genetics.

[32]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[33]  C. Davis,et al.  Horizontal gene transfer in parasitic plants. , 2015, Current opinion in plant biology.

[34]  Ernst Mayr,et al.  Principles of systematic zoology , 1969 .

[35]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[36]  M. Clegg,et al.  EVOLUTIONARY ANALYSIS OF THE LARGE SUBUNIT OF CARBOXYLASE (rbcL) NUCLEOTIDE SEQUENCE AMONG THE GRASSES (GRAMINEAE) , 1990, Evolution; international journal of organic evolution.

[37]  P. K. Endress,et al.  First steps towards a floral structural characterization of the major rosid subclades , 2006, Plant Systematics and Evolution.

[38]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[39]  J. Fjeldså,et al.  Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors , 2004, BMC Evolutionary Biology.

[40]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[41]  Mark P. Simmons,et al.  Mutually exclusive phylogenomic inferences at the root of the angiosperms: Amborella is supported as sister and Observed Variability is biased , 2017, Cladistics : the international journal of the Willi Hennig Society.

[42]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[43]  R. A. Atherton,et al.  The evolutionary root of flowering plants. , 2013, Systematic biology.

[44]  Y. Qiu,et al.  A Nonflowering Land Plant Phylogeny Inferred from Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes , 2007, International Journal of Plant Sciences.

[45]  Matthew A. Gitzendanner,et al.  Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America , 1997, Plant Systematics and Evolution.

[46]  Molecular evolutionary history of ancient aquatic angiosperms. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Donoghue,et al.  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[48]  G. Zurawski Evolution of Higher-Plant Chloroplast DNA-Encoded Genes: Implications for Structure-Function and Phylogenetic Studies , 1987 .

[49]  H. Won,et al.  Horizontal gene transfer from flowering plants to Gnetum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Dennis W. Stevenson,et al.  Monocot systematics: a combined analysis , 1995 .

[51]  Jeffrey D. Palmer,et al.  Chloroplast DNA Evolution and Biosystematic Uses of Chloroplast DNA Variation , 1987, The American Naturalist.

[52]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[53]  J. Mandel,et al.  Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms , 2016, Systematic biology.

[54]  C. Delwiche,et al.  Broad Phylogenomic Sampling and the Sister Lineage of Land Plants , 2012, PloS one.

[55]  Hong Ma,et al.  Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. , 2016, Molecular phylogenetics and evolution.

[56]  Ashley B. Morris,et al.  Comparative phylogeography of unglaciated eastern North America , 2006, Molecular ecology.

[57]  J. Doyle,et al.  Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy , 1992 .

[58]  J. Palmer,et al.  Comparative organization of chloroplast genomes. , 1985, Annual review of genetics.

[59]  J. G. Burleigh,et al.  Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms , 2009, BMC Evolutionary Biology.

[60]  J. Hellmann,et al.  Patterns of seed dispersal and pollen flow in Quercus garryana (Fagaceae) following post‐glacial climatic changes , 2009 .

[61]  Mark P. Simmons,et al.  Coalescence vs. concatenation: Sophisticated analyses vs. first principles applied to rooting the angiosperms. , 2015, Molecular phylogenetics and evolution.

[62]  C. N. Stewart,et al.  The evolutionary history of ferns inferred from 25 low-copy nuclear genes. , 2015, American journal of botany.

[63]  J. Palmer,et al.  Chloroplast DNA variation and evolution in pisum: patterns of change and phylogenetic analysis. , 1985, Genetics.

[64]  K. Folta,et al.  ASAP: Amplification, sequencing & annotation of plastomes , 2005, BMC Genomics.

[65]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[66]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[67]  W. M. Whitten,et al.  Phylogeny of the eudicots : a nearly complete familial analysis based on rbcL gene sequences , 2000 .

[68]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[69]  C. R. Parks,et al.  Molecular Phylogenetics of the Magnoliidae: Cladistic Analyses of Nucleotide Sequences of the Plastid Gene rbcL , 1993 .

[70]  T. Mockler,et al.  Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology , 2008, Nucleic acids research.

[71]  W. Kress,et al.  Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF , 2006 .

[72]  J. Palmer,et al.  Chloroplast DNA Variation and Plant Phylogeny , 1988 .

[73]  R. Oliver,et al.  Using chloroplast DNA to trace postglacial migration routes of oaks into Britain , 1995, Molecular ecology.

[74]  G. Learn,et al.  Evolutionary Relationships of the Caryophyllidae Based on Comparative rbcL Sequences , 1992 .

[75]  P. Maliga Plastid engineering bears fruit , 2001, Nature Biotechnology.

[76]  M. Clegg,et al.  Chloroplast DNA and the Study of Plant Phylogeny: Present Status and Future Prospects , 1992 .

[77]  D. Soltis,et al.  Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data , 1993 .

[78]  Jonathan F. Wendel,et al.  Phylogenetic Incongruence: Window into Genome History and Molecular Evolution , 1998 .

[79]  Dario Leister,et al.  Chloroplast research in the genomic age. , 2003, Trends in genetics : TIG.

[80]  Matthew A. Gitzendanner,et al.  Another look at the root of the angiosperms reveals a familiar tale. , 2014, Systematic biology.

[81]  Amit Dhingra,et al.  Rapid and accurate pyrosequencing of angiosperm plastid genomes , 2006, BMC Plant Biology.

[82]  Pamela S Soltis,et al.  Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. , 2018, American journal of botany.

[83]  D. Soltis,et al.  Systematic and evolutionary implications of rbcL sequence variation in Rosaceae , 1994 .

[84]  W. Kress,et al.  Phylogenetic analysis of the Zingiberales based on rbcL sequences. , 1993 .

[85]  M. Chase,et al.  Systematics of the Ericaceae, Empetraceae, Epacridaceae and Related Taxa Based Upon rbcL Sequence Data , 1993 .

[86]  J. G. Burleigh,et al.  Deep phylogenetic incongruence in the angiosperm clade Rosidae. , 2015, Molecular phylogenetics and evolution.

[87]  R. Petit,et al.  A set of primers for the amplification of chloroplast microsatellites in Quercus , 2003 .

[88]  Mark Fishbein,et al.  Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. , 2012, American journal of botany.

[89]  D. Soltis,et al.  Phylogenetic relationships of dennstaedtioid ferns: evidence from rbcL sequences. , 1994, Molecular phylogenetics and evolution.

[90]  D. Soltis,et al.  Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology , 1999, Nature.

[91]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[92]  Fay,et al.  Multigene Analyses of Monocot Relationships , 2006 .

[93]  Mark Fishbein,et al.  Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics , 2014, Applications in plant sciences.

[94]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[95]  D. R. Farrar,et al.  A community‐derived classification for extant lycophytes and ferns , 2016 .

[96]  R. Duff,et al.  Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. , 1999, American journal of botany.

[97]  Bin Wang,et al.  The deepest divergences in land plants inferred from phylogenomic evidence , 2006, Proceedings of the National Academy of Sciences.