Atmospheric Effects on Earth Rotation

One of the pivotal sources for fluctuations in all three components of the Earth’s rotation vector is the set of dynamical processes in the atmosphere, perceptible as motion and mass redistribution effects on a multitude of temporal and spatial scales. This review outlines the underlying theoretical framework for studying the impact of such geophysical excitation mechanisms on nutation, polar motion, and changes in length of day. It primarily addresses the so-called angular momentum approach with regard to its physical meaning and the application of data from numerical weather models. Emphasis is placed on the different transfer functions that are required for the frequency-dependent intercomparison of Earth rotation values from space geodetic techniques and the excitations from the output of atmospheric circulation models. The geophysical discussion of the review assesses the deficiencies of present excitation formalisms and acknowledges the oceans as other important driving agents for observed Earth rotation variations. A comparison of the angular momentum approach for the atmosphere to an alternative but equivalent modeling method involving Earth-atmosphere interaction torques is provided as well.

[1]  C. Bizouard,et al.  On atmospheric pressure perturbations on precession and nutations , 1996 .

[2]  R. D. Ray,et al.  Diurnal and Semidiurnal Variations in the Earth's Rotation Rate Induced by Oceanic Tides , 1994, Science.

[3]  Jianli Chen,et al.  Hydrological excitations of polar motion, 1993–2002 , 2005 .

[4]  Earth rotation as an interdisciplinary topic shared by astronomers, geodesists and geophysicists , 2002 .

[5]  O. de Viron,et al.  Diurnal angular momentum budget of the atmosphere and its consequences for Earth's nutation , 2001 .

[6]  Kurt Lambeck,et al.  The Earth's Variable Rotation: Geophysical Causes and Consequences , 1980 .

[7]  S. Petrov,et al.  Diurnal atmospheric forcing and temporal variations of the nutation amplitudes , 1998 .

[8]  B. Chao,et al.  Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum , 1996 .

[9]  C. Bizouard,et al.  Atmospheric torque on the Earth and comparison with atmospheric angular momentum variations , 1999 .

[10]  J. Wahr,et al.  Effect of the fluid core on changes in the length of day due to long period tides. , 1981 .

[11]  Nicole Capitaine,et al.  The use of the precise observations of the celestial ephemeris pole in the analysis of geophysical excitation of Earth rotation , 1993 .

[12]  B. Chao,et al.  Length-of-Day Variations Caused by El Ni�o-Southern Oscillation and Quasi-Biennial Oscillation , 1989, Science.

[13]  J. Wahr The effects of the atmosphere and oceans on the Earth's wobble — I. Theory , 1982 .

[14]  Harald Schuh,et al.  High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08 , 2011 .

[15]  O. de Viron,et al.  Atmospheric contributions to nutations and implications for the estimation of deep Earth's properties from nutation observations , 2011 .

[16]  J. Wahr,et al.  Friction- and mountain-torque estimates from global atmospheric data , 1984 .

[17]  J. Vondrák,et al.  Considerations concerning the non-rigid Earth nutation theory , 1998 .

[18]  Earth Rotation Observed by Very Long Baseline Interferometry and Ring Laser , 2009 .

[19]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[20]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[21]  J. Holton,et al.  An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere , 1972 .

[22]  J. Nastula,et al.  Regional atmospheric angular momentum contributions to polar motion excitation , 1999 .

[23]  H. Jeffreys Causes contributory to the Annual Variation of Latitude. (Plate 8.) , 1916 .

[24]  B. Chao On the excitation of the earth's polar motion , 1985 .

[25]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[26]  H. Schuh,et al.  Linear drift and periodic variations observed in long time series of polar motion , 2001 .

[27]  R. Ponte Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model , 1997 .

[28]  W. Zürn The nearly-diurnal free wobble-resonance , 1997 .

[29]  Thomas A. Herring,et al.  Erratum: Correction to ``Geodesy by Radio Interferometry: Studies of the forced nutations of the Earth, 1, Data Analysis'' , 1986 .

[30]  Richard S. Gross,et al.  the excitation of the Chandler wobble , 2000 .

[31]  W. Munk,et al.  Astronomy-Geophysics. (Book Reviews: The Rotation of the Earth. A geophysical discussion) , 1975 .

[32]  B. Chao,et al.  Hydrological and oceanic excitations to polar motion andlength‐of‐day variation , 2000 .

[33]  J. Vondrák,et al.  QUASI-DIURNAL ATMOSPHERIC AND OCEANIC EXCITATION OF NUTATION , 2007 .

[34]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[35]  O. de Viron,et al.  Closure in the Earth's angular momentum budget observed from subseasonal periods down to four days: No core effects needed , 2010 .

[36]  J. Merriam Zonal tides and changes in the length of day , 1980 .

[37]  P. Mcclure Diurnal polar motion , 1973 .

[38]  B. Chao On the excitation of the Earth's free wobble and reference frames , 1983 .

[39]  Pascal Gegout,et al.  Atmospheric and oceanic excitation of length-of-day variations during 1980–2000 , 2004 .

[40]  A. Brzeziński,et al.  Geophysical Excitation of the Chandler Wobble Revisited , 2012 .

[41]  Z. Altamimi,et al.  The impact of a No‐Net‐Rotation Condition on ITRF2000 , 2003 .

[42]  Richard S. Gross,et al.  Correspondence between theory and observations of polar motion , 1992 .

[43]  Indirect effect of the atmosphere through the oceans on the Earth nutation using the torque approach , 2001 .

[44]  Dimitris Menemenlis,et al.  Atmospheric and oceanic excitation of the Earth's wobbles during 1980–2000 , 2003 .

[45]  Thomas A. Herring,et al.  Geodesy by radio interferometry: Studies of the forced nutations of the Earth. II: Interpretation , 1986 .

[46]  S. Dickman Rotationally consistent Love numbers , 2005 .

[47]  B. Chao,et al.  Oceanic torques on solid Earth and their effects on Earth rotation , 2001 .

[48]  Helmut Moritz,et al.  Earth Rotation: Theory and Observation , 1987 .

[49]  A. Brzeziński,et al.  Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere , 2010 .

[50]  Aleksander Brzeziński,et al.  Influence Of The Atmosphere On Earth Rotation: What New Can Be Learned From The Recent Atmospheric Angular Momentum Estimates? , 2002 .

[51]  John M. Wahr,et al.  The effects of the atmosphere and oceans on the Earth's wobble and on the seasonal variations in the length of day — II. Results , 1983 .

[52]  R. Gross The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model , 1993 .

[53]  V. Dehant,et al.  Polar motion models: The torque approach. , 2005 .

[54]  F. Stephenson,et al.  Historical eclipses and the variability of the Earth's rotation , 2001 .

[55]  Florian Seitz Atmosphärische und ozeanische Einflüsse auf die Rotation der Erde - Numerische Untersuchungen mit einem dynamischen Erdsystemmodell , 2004 .

[56]  R. Rosen,et al.  Topographic Forcing of the Atmosphere and a Rapid Change in the Length of Day , 1994, Science.

[57]  STUDY OF ATMOSPHERIC AND OCEANIC EXCITATIONS IN THE MOTION OF EARTH'S SPIN AXIS IN SPACE , 2010 .

[58]  C. Wunsch,et al.  Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .

[59]  C. Wilson,et al.  On the variability of the Chandler frequency , 1997 .

[60]  V. Dehant,et al.  Tests on the validity of atmospheric torques on Earth computed from atmospheric model outputs , 2003 .

[61]  H. Iskenderian,et al.  Regional Sources of Mountain Torque Variability and High-Frequency Fluctuations in Atmospheric Angular Momentum , 1998 .

[62]  Richard S. Gross,et al.  Earth Rotation Variations – Long Period , 2007 .

[63]  Jianli Chen,et al.  Revised atmospheric excitation function series related to Earth's variable rotation under consideration of surface topography , 2006 .

[64]  S. George Philander,et al.  Geophysical Interplays. (Book Reviews: El Nino, La Nina, and the Southern Oscillation.) , 1990 .

[65]  D. Salstein ANGULAR MOMENTUM OF THE ATMOSPHERE , 2003 .

[66]  V. Dehant,et al.  Earth's Rotation And High Frequency Equatorial Angular Momentum Budget Of The Atmosphere , 1999 .

[67]  Ronald B. Smith,et al.  Length-of-Day Changes and Mountain Torque during El Nifio , 1987 .

[68]  T. Eubanks Variations in the Orientation of the Earth , 2013 .

[69]  S. R. Dickman,et al.  Evaluation of “effective angular momentum function” formulations with respect to core‐mantle coupling , 2003 .

[70]  F. Dahlen The Passive Influence of the Oceans upon the Rotation of the Earth , 1976 .

[71]  Raymond Hide,et al.  Atmospheric angular momentum fluctuations, length-of-day changes and polar motion , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[72]  H. Jeffreys CAUSES CONTRIBUTORY TO THE ANNUAL VARIATION OF LATITUDE , 1916 .

[73]  F. Dahlen,et al.  The period and Q of the Chandler wobble , 1981 .

[74]  R. Gross,et al.  Evidence for excitation of polar motion by fortnightly ocean tides , 1996 .

[75]  J. Wahr,et al.  An excitation mechanism for the free ‘core nutation’ , 1981 .

[76]  The Dynamics of Atmospherically Driven Intraseasonal Polar Motion , 2008 .