A note on singular perturbation problems via Aubry-Mather theory

Exploiting the metric approach to Hamilton-Jacobi equation recently introduced by Fathi and Siconolfi [13], we prove a singular perturbation result for a general class of Hamilton-Jacobi equations. Considered in the framework of small random perturbations of dynamical systems, it extends a result due to Kamin [19] to the case of a dynamical system having several attracting points inside the domain.

[1]  H. Ishii,et al.  Uniqueness results for a class of hamilton-jacobi equations with singular coefficients , 1995 .

[2]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[3]  Hitoshi Ishii,et al.  A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities , 1985 .

[4]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[5]  Sebastian J. Schreiber,et al.  Random Perturbations of Dynamical Systems with Absorbing States , 2006, SIAM J. Appl. Dyn. Syst..

[6]  S. Kamin Singular perturbation problems and the Hamilton-Jacobi equation , 1986 .

[7]  G. Barles,et al.  Comparison principle for dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations , 1990 .

[8]  B. Perthame Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations , 1990 .

[9]  The vanishing viscosity method for hamilton-jacobi equations with a singular point of attracting type , 1987 .

[10]  Fabio Camilli,et al.  Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems , 1999 .

[11]  The exponential leveling in elliptic singular perturbation problems with complicated attractors , 1990 .

[12]  Antonio Siconolfi,et al.  PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians , 2005 .

[13]  Herbert Amann,et al.  On Some Existence Theorems for Semi-Linear Elliptic Equations. , 1977 .

[14]  H. Ishii A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type , 1987 .

[15]  A. Eizenberg Elliptic perturbations for a class of Hamilton–Jacobi equations , 1993 .

[16]  H. Ishii,et al.  Remarks on elliptic singular perturbation problems , 1991 .

[17]  Renato Iturriaga,et al.  Physical solutions of the Hamilton-Jacobi equation , 2005 .

[18]  Patrick Bernard Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds , 2005 .