Artificial molecular machines driven by light.

The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. The problem of the energy supply to make molecular machines work is of the greatest importance. Research in the last ten years has demonstrated that light energy can be used to power artificial nanomachines by exploiting photochemical processes in appropriately designed systems. More recently, it has become clear that under many aspects light is the best choice to power molecular machines; for example, systems that show autonomous operation and do not generate waste products can be obtained. This review is intended to discuss the design principles at the basis of light-driven artificial nanomachines, and provide an up-to-date overview on the prototype systems that have been developed.

[1]  B Russell,et al.  Lessons from nature. , 1993, Nursing.

[2]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[3]  Chih-Ming Ho,et al.  Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates , 2004 .

[4]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[5]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[6]  Xenophon E. Verykios,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005 .

[7]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[8]  Christoph A. Schalley,et al.  Hydrogen Bond Mediated Template Synthesis of Rotaxanes, Catenanes, and Knotanes , 2006 .

[9]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[10]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[11]  Richard A. L. Jones,et al.  Soft Machines: Nanotechnology and Life , 2004 .

[12]  J. F. Stoddart,et al.  Photochemistry of a Dumbbell-Shaped Multicomponent System Hosted Inside the Mesopores of AL/MCM-41 Aluminosilicate. Generation of Long-Lived Viologen Radicals , 2003 .

[13]  Chengde Mao,et al.  Molecular gears: a pair of DNA circles continuously rolls against each other. , 2004, Journal of the American Chemical Society.

[14]  Andrew Gilbert,et al.  Essentials of Molecular Photochemistry , 1991 .

[15]  Alan E. Rowan,et al.  Mimicking the motion of life: catalytically active rotaxanes as processive enzyme mimics , 2004 .

[16]  J. F. Stoddart,et al.  Photo-Driven Molecular Devices , 2007 .

[17]  Xiang Ma,et al.  A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. , 2005, Chemistry.

[18]  J. F. Stoddart,et al.  Photoinduced electron flow in a self-assembling supramolecular extension cable , 2006, Proceedings of the National Academy of Sciences.

[19]  Hiizu Iwamura,et al.  Stereochemical consequences of dynamic gearing , 1988 .

[20]  Vincenzo Balzani,et al.  Photochemical molecular devices , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[21]  Walter F Paxton,et al.  Motility of catalytic nanoparticles through self-generated forces. , 2005, Chemistry.

[22]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[23]  Hiizu Iwamura,et al.  Recognition of the phase relationship between remote substituents in 9,10-bis(3-chloro-9-triptycyloxy)triptycene molecules undergoing rapid internal rotation cooperatively , 1983 .

[24]  Francesco Zerbetto,et al.  Information Storage Using Supramolecular Surface Patterns , 2003, Science.

[25]  R. Astumian,et al.  Chemical peristalsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Hiroto Murakami,et al.  A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. , 2005, Journal of the American Chemical Society.

[27]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[28]  F. Marchesoni,et al.  Brownian motors , 2004, cond-mat/0410033.

[29]  Gianluca Accorsi,et al.  Macrocyclic Complexes of [Ru(N-N)2]2+ Units [N-N = 1,10 Phenanthroline or 4-(p-Anisyl)-1,10-Phenanthroline]: Synthesis and Photochemical Expulsion Studies , 2003 .

[30]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[31]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[32]  Auke Meetsma,et al.  A donor-acceptor substituted molecular motor: unidirectional rotation driven by visible light. , 2003, Organic & biomolecular chemistry.

[33]  Auke Meetsma,et al.  Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. , 2005, Organic & biomolecular chemistry.

[34]  Auke Meetsma,et al.  Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. , 2005, Journal of the American Chemical Society.

[35]  David Bebbington,et al.  A Molecular Brake , 1994 .

[36]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[37]  J. F. Stoddart,et al.  A photoactive molecular triad as a nanoscale power supply for a supramolecular machine. , 2005, Chemistry.

[38]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[39]  Auke Meetsma,et al.  Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. , 2002, Journal of the American Chemical Society.

[40]  Emma R. Schofield,et al.  RUII-POLYPYRIDINE COMPLEXES COVALENTLY LINKED TO ELECTRON ACCEPTORS AS WIRES FOR LIGHT-DRIVEN PSEUDOROTAXANE-TYPE MOLECULAR MACHINES , 1998 .

[41]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[42]  B. Feringa,et al.  Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. , 2005, Chemical communications.

[43]  Vincenzo Balzani,et al.  A LIGHT-FUELED PISTON CYLINDER MOLECULAR-LEVEL MACHINE , 1998 .

[44]  B. Feringa,et al.  Controlled rotary motion in a monolayer of molecular motors. , 2007, Angewandte Chemie.

[45]  J. F. Stoddart,et al.  A redox-driven multicomponent molecular shuttle. , 2007, Journal of the American Chemical Society.

[46]  J. F. Stoddart,et al.  A Comparison of Shuttling Mechanisms in Two Constitutionally Isomeric Bistable Rotaxane-Based Sunlight-Powered Nanomotors , 2006 .

[47]  Vincenzo Balzani,et al.  Artificial nanomachines based on interlocked molecular species: recent advances. , 2006, Chemical Society reviews.

[48]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[49]  David J. Williams,et al.  Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .

[50]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[51]  J. F. Stoddart,et al.  Towards Organization of Molecular Machines at Interfaces: Langmuir Films and Langmuir–Blodgett Multilayers of an Acid–Base Switchable Rotaxane , 2006 .

[52]  Michael J. Krische,et al.  Second generation light-driven molecular motors , 2002 .

[53]  David A. Leigh,et al.  Photochemistry: Lighting up nanomachines , 2006, Nature.

[54]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[55]  M Venturi,et al.  Artificial molecular-level machines: which energy to make them work? , 2001, Accounts of chemical research.

[56]  M. Schliwa,et al.  Molecular motors , 2003, Nature.

[57]  D. Qu,et al.  A half adder based on a photochemically driven [2]rotaxane. , 2005, Angewandte Chemie.

[58]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[59]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[60]  J. Sauvage,et al.  A Ruthenium(II)‐Complexed Rotaxane Whose Ring Incorporates a 6,6′‐Diphenyl‐2,2′‐bipyridine: Synthesis and Light‐Driven Motions , 2005 .

[61]  He Tian,et al.  A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .

[62]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[63]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[64]  Vincenzo Balzani,et al.  The Future of Energy Supply: Challenges and Opportunities , 2007 .

[65]  I. Willner,et al.  Electronically transduced molecular mechanical and information functions on surfaces. , 2001, Accounts of chemical research.

[66]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[67]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Harriman,et al.  Artificial Phototropism: Reversible Photoseparation of Self‐Assembled Interlocking Conjugates , 1997 .

[70]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[71]  Takanori Shima,et al.  Molecular gyroscopes: [Fe(CO)(3)] and [Fe(CO)(2)(NO)](+) rotators encased in three-spoke stators; facile assembly by alkene metatheses. , 2004, Angewandte Chemie.

[72]  Alberto Credi,et al.  Shuttling dynamics in an acid-base-switchable [2]rotaxane. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[73]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  B. Feringa,et al.  Chiroptical Molecular Switches. , 1996, Chemical reviews.

[75]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[76]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[77]  Itamar Willner,et al.  A photoactivated 'molecular train' for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode , 2001 .

[78]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[79]  Steven A. Edwards,et al.  The Nanotech Pioneers , 2006 .

[80]  Vincenzo Balzani,et al.  A molecular plug-socket connector. , 2007, Journal of the American Chemical Society.

[81]  Dominik Horinek,et al.  Artificial Molecular Rotors , 2005 .

[82]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  F. Simmel,et al.  DNA nanodevices. , 2005, Small.

[84]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[85]  Ben L Feringa,et al.  Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  A AlbertoCredi Artificial Molecular Motors Powered by Light , 2006 .

[87]  J. F. Stoddart,et al.  Powering a supramolecular machine with a photoactive molecular triad. , 2004, Small.

[88]  Alan E. Rowan,et al.  Epoxidation of polybutadiene by a topologically linked catalyst , 2003, Nature.

[89]  T R Kelly,et al.  Progress toward a rationally designed molecular motor. , 2001, Accounts of chemical research.

[90]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.