Unsupervised Discovery of Visual Face Categories

Human faces can be arranged into different face categories using information from common visual cues such as gender, ethnicity, and age. It has been demonstrated that using face categorization as a precursor step to face recognition improves recognition rates and leads to more graceful errors. Although face categorization using common visual cues yields meaningful face categories, developing accurate and robust gender, ethnicity, and age categorizers is a challenging issue. Moreover, it limits the overall number of possible face categories and, in practice, yields unbalanced face categories which can compromise recognition performance. This paper investigates ways to automatically discover a categorization of human faces from a collection of unlabeled face images without relying on predefined visual cues. Specifically, given a set of face images from a group of known individuals (i.e., gallery set), our goal is finding ways to robustly partition the gallery set (i.e., face categories). The objective is being able to assign novel images of the same individuals (i.e., query set) to the correct face category with high accuracy and robustness. To address the issue of face category discovery, we represent faces using local features and apply unsupervised learning (i.e., clustering). To categorize faces in novel images, we employ nearest-neighbor algorithms or learn the separating boundaries between face categories using supervised learning (i.e., classification). To improve face categorization robustness, we allow face categories to share local features as well as to overlap. We demonstrate the performance of the proposed approach through extensive experiments and comparisons using the FERET database.

[1]  J. Brigham The Influence of Race on Face Recognition , 1986 .

[2]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[5]  Andrew W. Fitzgibbon,et al.  Joint manifold distance: a new approach to appearance based clustering , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  Michael Georgiopoulos,et al.  Increasing classification accuracy using multiple-neural-network schemes , 1992, Defense, Security, and Sensing.

[7]  Venu Govindaraju,et al.  Efficient search and retrieval in biometric databases , 2005, SPIE Defense + Commercial Sensing.

[8]  Sushil J. Louis,et al.  Genetic feature subset selection for gender classification: a comparison study , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[9]  Peter Hosten,et al.  An Evaluation of Local Features for Face Detection and Localization , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[10]  Guy Tiberghien,et al.  Gender is a dimension of face recognition. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[11]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[12]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Anastasios Tefas,et al.  Face recognition via adaptive discriminant clustering , 2008, 2008 15th IEEE International Conference on Image Processing.

[15]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[16]  Shingo Mabu,et al.  A sequential subspace face recognition framework using genetic-based clustering , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[17]  Jun Luo,et al.  Person-Specific SIFT Features for Face Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[18]  Ioannis Pitas,et al.  A Mutual Information based Face Clustering Algorithm for Movies , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[19]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[20]  Hermann Ney,et al.  SURF-Face: Face Recognition Under Viewpoint Consistency Constraints , 2009, BMVC.

[21]  Venu Govindaraju,et al.  Classification and Indexing in Large Biometric Databases , 2004 .

[22]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[23]  Gerhard Rigoll,et al.  Content based indexing of images and video using face detection and recognition methods , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[24]  I. Pitas,et al.  Hierarchical Face Clustering using SIFT Image Features , 2007, 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing.

[25]  Ji Tao,et al.  Face clustering in videos using constraint propagation , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[26]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[28]  Jay Yagnik,et al.  SPEC hashing: Similarity preserving algorithm for entropy-based coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Andrea Lagorio,et al.  On the Use of SIFT Features for Face Authentication , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[30]  Bruce A. Draper,et al.  Introduction to the Bag of Features Paradigm for Image Classification and Retrieval , 2011, ArXiv.

[31]  Pietro Perona,et al.  Unsupervised learning of visual taxonomies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Yun Fu,et al.  Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression , 2008, IEEE Transactions on Image Processing.

[33]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[34]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Alice J. O'Toole,et al.  An other-race effect for face recognition algorithms , 2011, TAP.

[36]  Masahide Kaneko,et al.  Robust Face Recognition Using Block-Based Bag of Words , 2010, 2010 20th International Conference on Pattern Recognition.

[37]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[38]  Trevor Darrell,et al.  Unsupervised Learning of Categories from Sets of Partially Matching Image Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[39]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[40]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[41]  A. O'Toole,et al.  An ‘other-Race Effect’ for Categorizing Faces by Sex , 1996, Perception.

[42]  Zhifeng Li,et al.  Bayesian face recognition using support vector machine and face clustering , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Chandra Kambhamettu,et al.  Can discriminative cues aid face recognition across age? , 2011, Face and Gesture 2011.

[44]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[45]  Bernt Schiele,et al.  Efficient Clustering and Matching for Object Class Recognition , 2006, BMVC.

[46]  Hans Jørgen Andersen,et al.  British Machine Vision Conference 2006 , 2006 .

[47]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[48]  Yi-Ping Hung,et al.  Personalized face verification system using owner-specific cluster-dependent LDA-subspace , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[49]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[50]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[51]  Sarah Jane Delany k-Nearest Neighbour Classifiers , 2007 .

[52]  Michael A. Webster,et al.  Investigating the Impact of Face Categorization on Recognition Performance , 2005, ISVC.

[53]  Alice J. O'Toole,et al.  Classifying adults' and children's faces by sex: computational investigations of subcategorical feature encoding , 2001, Cogn. Sci..

[54]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[55]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[56]  Biswaroop Palit,et al.  Spectral face clustering , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[57]  Zehang Sun,et al.  Object detection using feature subset selection , 2004, Pattern Recognit..

[58]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..

[59]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[60]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[63]  Andrea F. Abate,et al.  2D and 3D face recognition: A survey , 2007, Pattern Recognit. Lett..

[64]  Anil K. Jain,et al.  Ethnicity identification from face images , 2004, SPIE Defense + Commercial Sensing.

[65]  Rodrigo Verschae,et al.  Face Recognition in Unconstrained Environments: A Comparative Study , 2008 .

[66]  Jean-Luc Dugelay,et al.  Clustering face images with application to image retrieval in large databases , 2005, SPIE Defense + Commercial Sensing.

[67]  Kenneth Rose,et al.  Deformable face mapping for person identification , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[68]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[69]  Konstantinos N. Plataniotis,et al.  Boosting face recognition on a large-scale database , 2002, Proceedings. International Conference on Image Processing.

[70]  S. Lelandais,et al.  A New Clustering Approach for Face Identification , 2008, 2008 First Workshops on Image Processing Theory, Tools and Applications.

[71]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[72]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[73]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[74]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[75]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..