Computational optimal control for the time fractional convection-diffusion-reaction system

This paper proposes a numerical approximation method for computational optimal control of a time fractional convection-diffusion-reaction system. The proposed method involves discretizing the spatial domain by finite element method, approximating the admissible controls by control parameterization, and then obtaining an optimal parameter selection problem which can be solved by numerical optimization algorithms such as sequential quadratic programming. Specifically, an implicit finite difference method is employed to solve the time fractional system, and the sensitivity method for gradient computation in integer order optimal control problems is adjusted to the fractional order case. Simulation results demonstrate the validity and accuracy of the proposed numerical approximation method.

[1]  Hu Chen,et al.  Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain , 2016, J. Comput. Phys..

[2]  Urmila M. Diwekar,et al.  A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution of fractional optimal control problems , 2014 .

[3]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[4]  Kok Lay Teo,et al.  Optimal control problems with multiple characteristic time points in the objective and constraints , 2008, Autom..

[5]  John F. Forbes,et al.  Optimal control of an advection-dominated catalytic fixed-bed reactor with catalyst deactivation , 2013 .

[6]  Liquan Mei,et al.  The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics ✩ , 2012 .

[7]  G. Espinosa-Paredes,et al.  Time-fractional telegraph equation for hydrogen diffusion during severe accident in BWRs , 2016 .

[8]  Chao Xu,et al.  Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas , 2016, Commun. Nonlinear Sci. Numer. Simul..

[9]  S. Abbasbandy,et al.  Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations , 2012 .

[10]  Ranran Liu,et al.  Strategy optimization of resource scheduling based on cluster rendering , 2016, Cluster Computing.

[11]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[12]  Wei-Yuan Qiu,et al.  The application of fractional derivatives in stochastic models driven by fractional Brownian motion , 2010 .

[13]  Gisèle M. Mophou,et al.  Optimal control of fractional diffusion equation , 2011, Comput. Math. Appl..

[14]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[15]  Sohrab Effati,et al.  A Neural Network Approach for Solving a Class of Fractional Optimal Control Problems , 2017, Neural Processing Letters.

[16]  Nasser Sadati,et al.  Fopid Controller Design for Robust Performance Using Particle Swarm Optimization , 2007 .

[17]  M. Behroozifar,et al.  An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation , 2017, Appl. Math. Comput..

[18]  U. Diwekar,et al.  A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions , 2014 .

[19]  Juan Luo,et al.  The service quality evaluation of ecologic economy systems using simulation computing , 2016, Comput. Syst. Sci. Eng..

[20]  Chao Xu,et al.  Optimal boundary control for water hammer suppression in fluid transmission pipelines , 2014, Comput. Math. Appl..

[21]  Kok Lay Teo,et al.  Water hammer mitigation via PDE-constrained optimization , 2015 .

[22]  Xinlong Feng,et al.  The characteristic variational multiscale method for convection-dominated convection–diffusion–reaction problems , 2014 .

[23]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[24]  K. Teo,et al.  THE CONTROL PARAMETERIZATION METHOD FOR NONLINEAR OPTIMAL CONTROL: A SURVEY , 2013 .

[25]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[26]  Benjamin Tews,et al.  OPTIMAL CONTROL OF SINGULARLY PERTURBED ADVECTION-DIFFUSION-REACTION PROBLEMS , 2010 .

[27]  B. Henry,et al.  Fractional chemotaxis diffusion equations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[29]  Wei Gong,et al.  Finite element approximation of optimal control problems governed by time fractional diffusion equation , 2016, Comput. Math. Appl..

[30]  Bülent Karasözen,et al.  Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations , 2014, J. Comput. Appl. Math..

[31]  Xin Wang,et al.  Integral fractional pseudospectral methods for solving fractional optimal control problems , 2015, Autom..

[32]  Hong Wang,et al.  A Fast Gradient Projection Method for a Constrained Fractional Optimal Control , 2016, J. Sci. Comput..

[33]  Kolade M. Owolabi,et al.  Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order , 2017, Commun. Nonlinear Sci. Numer. Simul..

[34]  Hristo V. Kojouharov,et al.  An unconditionally positivity preserving scheme for advection-diffusion reaction equations , 2013, Math. Comput. Model..

[35]  Stevan Dubljevic,et al.  Optimal boundary control of a diffusion–convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process , 2012 .

[36]  Saudi Arabia,et al.  AN ACCURATE NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS , 2015 .

[37]  Panagiotis D. Christofides,et al.  Optimal control of diffusion-convection-reaction processes using reduced-order models , 2008, Comput. Chem. Eng..

[38]  Yu Xin,et al.  An approximation for the boundary optimal control problem of a heat equation defined in a variable domain , 2014 .

[39]  Mingrong Cui,et al.  Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients , 2015, J. Comput. Phys..