Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5).

We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe(5). We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe(5) is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.

[1]  G. Gu,et al.  Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5 , 2015, 1505.00307.

[2]  L. Molenkamp,et al.  Magneto-optics of massive dirac fermions in bulk Bi2Se3. , 2015, Physical Review Letters.

[3]  Su-Yang Xu,et al.  Observation of Fermi arc surface states in a topological metal , 2015, Science.

[4]  C. Felser,et al.  Linear magnetoresistance caused by mobility fluctuations in n-doped Cd(3)As(2). , 2014, Physical review letters.

[5]  L. Li,et al.  Landau level splitting in Cd3As2 under high magnetic fields , 2014, Nature Communications.

[6]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[7]  V. Aji,et al.  Tunable Line Node Semimetals , 2014, 1408.3084.

[8]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[9]  S. Y. Li,et al.  Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd₃As₂. , 2014, Physical review letters.

[10]  Q. Gibson,et al.  Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂. , 2014, Nature materials.

[11]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[12]  X. Qi,et al.  Tunable circular dichroism due to the chiral anomaly in Weyl semimetals , 2014, 1401.2762.

[13]  D. Kharzeev The Chiral Magnetic Effect and anomaly-induced transport , 2013, 1312.3348.

[14]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[15]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[16]  Su-Yang Xu,et al.  Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 , 2013, Nature Communications.

[17]  X. Dai,et al.  Transition-Metal Pentatelluride ZrTe 5 and HfTe 5 : A Paradigm for Large-Gap Quantum Spin Hall Insulators , 2013, 1309.7529.

[18]  V. A. Miransky,et al.  Engineering Weyl nodes in Dirac semimetals by a magnetic field , 2013, 1307.6230.

[19]  Si Wu,et al.  Axion response in Weyl semimetals , 2013, 1306.5344.

[20]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[21]  J. Carbotte,et al.  Magneto-optical conductivity of Weyl semimetals , 2013, 1305.0275.

[22]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[23]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[24]  A. Vishwanath,et al.  Charge transport in Weyl semimetals. , 2011, Physical review letters.

[25]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[26]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[27]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[28]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[29]  C. Berger,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.