Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. I: model development

[1]  C. Geankoplis Transport processes and unit operations , 1978 .

[2]  C. Han,et al.  Studies on structural foam processing. IV. Bubble growth during mold filling , 1981 .

[3]  R. Upadhyay Study of bubble growth in foam injection molding , 1985 .

[4]  R. E. Carter Rheology of food, pharmaceutical and biological materials with general rheology , 1990 .

[5]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[6]  James Freeman Steffe,et al.  Rheological Methods in Food Process Engineering , 1992 .

[7]  K. Niranjan,et al.  Food extrusion science and technology , 1993 .

[8]  P. Hollingsworth,et al.  Food advertising at the crossroads : now for an FTC-approved word from our sponsor , 1993 .

[9]  John R. Mitchell,et al.  A computer simulation of the dynamics of bubble growth and shrinkage during extrudate expansion , 1994 .

[10]  Syed S. H. Rizvi,et al.  The combined application of supercritical fluid and extrusion technology , 1995 .

[11]  E. Beckman,et al.  Nucleation and growth in microcellular materials: Supercritical CO2 as foaming agent , 1995 .

[12]  Sebastiano Correra,et al.  Mathematical modelling of leavened cereal goods , 1995 .

[13]  Chul B. Park,et al.  Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers , 1995 .

[14]  A. Nussinovitch,et al.  Modelling deformation and flow during vapor-induced puffing , 1995 .

[15]  S. Rizvi,et al.  Application of supercritical fluid extrusion to cereal processing , 1996 .

[16]  S. Rizvi,et al.  Structural properties of protein-stabilized starch-based supercritical fluid extrudates , 1999 .

[17]  S. Rizvi,et al.  Mechanical properties of protein‐stabilized starch‐based supercritical fluid extrudates , 2000 .