Chemical fragments in real space: Definitions, properties, and energetic decompositions

The physical and chemical meaning of real space molecular fragments resulting from arbitrary partitions of the density is reviewed under a common unifying formalism. Both fuzzy (interpenetrating) and non‐fuzzy (exhaustive) decompositions are treated on an equal basis. Density decompositions are consistently generalized to compatible density matrix partitions by using Li and Parr's ideas (Li and Parr J Chem Phys 1986, 84, 1704), and these are carried onto an energy partition. It is argued that the merits of a given decomposition should be judged against both the charge and the energetic image it provides. Atomic partitions are used to show how the interacting quantum atoms approach (IQA) allows us to cope with the most important energy cancellations of quantum chemistry. Binding results from a trade‐off between atomic (or fragment) energy deformations with respect to a reference and interatomic (interfragment) interactions. Deformation energies are divided into charge transfer and redistribution terms and their relative roles are analyzed. A number of systems are compared against the fuzziness of different density decompositions. The results consistently show that fuzzy partitions tend to give low atomic net charges and enhanced covalency, while exhaustive partitions generate larger net charges and smaller covalencies, across a wide range of bonding regimes. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  W. E. Palke,et al.  The electronic chemical potential and the H atom in the H2 molecule , 1980 .

[2]  R. Parr,et al.  Information Theory Thermodynamics of Molecules and Their Hirshfeld Fragments , 2001 .

[3]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[4]  Paul G. Mezey,et al.  The holographic electron density theorem and quantum similarity measures , 1999 .

[5]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[6]  Dulal C. Ghosh,et al.  Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii , 2002 .

[7]  P. Salvador,et al.  Density functional energy decomposition into one- and two-atom contributions. , 2005, The Journal of chemical physics.

[8]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[9]  J. Recio,et al.  Ab initio pair potentials from quantum-mechanical atoms-in-crystals calculations , 1993 .

[10]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[11]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[12]  Luaña,et al.  Simulation of ionic crystals: The ab initio perturbed-ion method and application to alkali hydrides and halides. , 1990, Physical review. B, Condensed matter.

[13]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[14]  P. Salvador,et al.  Energy partitioning for "fuzzy" atoms. , 2004, The Journal of chemical physics.

[15]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[16]  R. López,et al.  Chemical Notions from the Electron Density. , 2005, Journal of chemical theory and computation.

[17]  István Mayer,et al.  An exact chemical decomposition scheme for the molecular energy , 2003 .

[18]  P. Salvador,et al.  One- and two-center energy components in the atoms in molecules theory , 2001 .

[19]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[20]  W. Adams,et al.  Generalized Huzinaga building‐block equations for nonorthogonal electronic groups: Relation to the Adams–Gilbert theory , 1992 .

[21]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[22]  R. Bochicchio,et al.  A study of the partitioning of the first-order reduced density matrix according to the theory of atoms in molecules. , 2005, The Journal of chemical physics.

[23]  István Mayer,et al.  A chemical energy component analysis , 2000 .

[24]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[25]  M. A. Blanco Quantum mechanical cluster calculations of ionic materials: Revision 10 of theab initio Perturbed Ion program , 1997 .

[26]  Max Born,et al.  Zur Gittertheorie der Ionenkristalle , 1932 .

[27]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[28]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[29]  Hasse Fredriksson,et al.  Theory of Atoms and Molecules , 2008 .

[30]  R. Bader,et al.  Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties , 1972 .

[31]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[33]  Á. M. Pendás,et al.  Two-electron integrations in the quantum theory of atoms in molecules. , 2004, The Journal of chemical physics.

[34]  Rafael López,et al.  Analytical method for the representation of atoms‐in‐molecules densities , 2004, J. Comput. Chem..

[35]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[36]  Lemin Li,et al.  The atom in a molecule: A density matrix approach , 1986 .

[37]  R. López,et al.  Analysis of the molecular density: STO densities , 2002 .

[38]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[39]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[40]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[41]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[42]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[43]  Mark A. Spackman,et al.  Atomic charges and electron density partitioning , 1985 .

[44]  R. López,et al.  Analysis of the molecular density , 1999 .

[45]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[46]  Rafael López,et al.  Electrostatic potentials and fields from density expansions of deformed atoms in molecules , 2004, J. Comput. Chem..

[47]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[48]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[49]  P. Mori-Sánchez,et al.  Hirshfeld surfaces as approximations to interatomic surfaces , 2002 .

[50]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[51]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[52]  Chérif F. Matta,et al.  Atomic Charges Are Measurable Quantum Expectation Values: A Rebuttal of Criticisms of QTAIM Charges , 2004 .

[53]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[54]  R. Bader,et al.  Towards the development of the quantum mechanics of a subspace , 1975 .

[55]  E. Francisco,et al.  Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. , 2005, Journal of chemical theory and computation.

[56]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[57]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[58]  R. Bochicchio,et al.  Energy decompositions according to physical space partitioning schemes. , 2005, The Journal of chemical physics.

[59]  Mark A. Spackman,et al.  Chemical properties from the promolecule , 1986 .

[60]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[61]  E. Francisco,et al.  A Molecular Energy Decomposition Scheme for Atoms in Molecules. , 2006, Journal of chemical theory and computation.

[62]  Evelio Francisco,et al.  Two‐electron integrations in the Quantum Theory of Atoms in Molecules with correlated wave functions , 2005, J. Comput. Chem..

[63]  A. Barzykin,et al.  Mechanism of Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline Semiconductor Films , 2004 .

[64]  Peter Politzer,et al.  Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule , 1970 .

[65]  Paul L. A. Popelier,et al.  Convergence of the multipole expansion for electrostatic potentials of finite topological atoms , 2000 .

[66]  P. Salvador,et al.  Comparison of the AIM delocalization index and the Mayer and fuzzy atom bond orders. , 2005, The journal of physical chemistry. A.

[67]  F. Escudero,et al.  Atoms in molecules , 1982 .

[68]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[69]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.