Banach frames for α-modulation spaces

Abstract This paper is concerned with the characterization of α-modulation spaces by Banach frames, i.e., stable and redundant non-orthogonal expansions, constituted of functions obtained by a suitable combination of translation, modulation and dilation of a mother atom. In particular, the parameter α ∈ [ 0 , 1 ] governs the dependence of the dilation factor on the frequency. The result is achieved by exploiting intrinsic properties of localization of such frames. The well-known Gabor and wavelet frames arise as special cases ( α = 0 ) and limiting case ( α → 1 ) , to characterize respectively modulation and Besov spaces. This intermediate theory contributes to a further answer to the theoretical need of a common interpretation and framework between Gabor and wavelet theory and to the construction of new tools for applications in time–frequency analysis, signal processing, and numerical analysis.

[1]  Karlheinz Gr öchenig Localization of Frames , 2004 .

[2]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[3]  P. Lemarié,et al.  Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .

[4]  M. Fornasier Quasi-orthogonal decompositions of structured frames , 2004 .

[5]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[6]  Joseph D. Lakey,et al.  Embeddings and Uncertainty Principles for Generalized Modulation Spaces , 2001 .

[7]  Michael Frazier,et al.  Decomposition of Besov Spaces , 2009 .

[8]  Gabriele Steidl,et al.  Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces , 2004 .

[9]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family , 2002 .

[10]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[11]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[12]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[13]  M. Fornasier,et al.  Continuous Frames, Function Spaces, and the Discretization Problem , 2004, math/0410571.

[14]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[15]  M. Fornasier,et al.  Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces , 2008 .

[16]  M. Nielsen,et al.  Nonlinear approximation in α ‐modulation spaces , 2006 .

[17]  H. Feichtinger Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .

[18]  Lasse Borup,et al.  Pseudodifferential operators on a-modulation spaces , 2004 .

[19]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[20]  Michael Martin Nieto,et al.  Coherent States , 2009, Compendium of Quantum Physics.

[21]  H. Triebel Theory of Function Spaces III , 2008 .

[22]  Joseph D. Lakey,et al.  Extensions of the Heisenberg Group by Dilations and Frames , 1995 .

[23]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[24]  Symmetry of Matrix Algebras and Symbolic Calculus for Infinite Matrices , 2022 .

[25]  Charles Fefferman,et al.  Wave packets and fourier integral operators , 1978 .

[26]  Karlheinz Gröchenig,et al.  Localization of frames II , 2004 .

[27]  Bruno Torrésani,et al.  Hybrid representations for audiophonic signal encoding , 2002, Signal Process..

[28]  Christopher Heil,et al.  Perturbations of Banach Frames and Atomic Decompositions , 2009 .

[29]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[30]  Hans G. Feichtinger,et al.  Flexible Gabor-wavelet atomic decompositions for L2-Sobolev spaces , 2006 .

[31]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family, II , 2002 .

[32]  Christopher Heil,et al.  Perturbation of Banach Frames and Atomic Decomposition , 1997 .

[33]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[34]  B. Torrésani Wavelets associated with representations of the affine Weyl–Heisenberg group , 1991 .

[35]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[36]  Karlheinz Gröchenig,et al.  Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices , 2006 .

[37]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[38]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[39]  B. Torrésani Time-frequency representations : wavelet packets and optimal decomposition , 1992 .

[40]  Massimo Fornasier,et al.  Intrinsic Localization of Frames , 2005 .

[41]  M. Holschneider,et al.  An Interpolation Family between Gabor and Wavelet Transformations , 2003 .

[42]  E. Somersalo,et al.  A GENERALIZATION OF THE CALDERON-VAILLANCOURT THEOREM TO LP AND HP , 1988 .

[43]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[44]  Demetrio Labate,et al.  Pseudodifferential Operators on Modulation Spaces , 2001 .

[45]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[46]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere , 2004, Adv. Comput. Math..

[47]  H. Triebel Theory Of Function Spaces , 1983 .

[48]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to Analyzing Functions on Spheres , 2004 .

[49]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[50]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[51]  Demetrio Labate,et al.  Oversampling, quasi-affine frames, and wave packets , 2004 .

[52]  H. Feichtinger,et al.  Banach Spaces of Distributions Defined by Decomposition Methods, I , 1985 .

[53]  G. Folland Harmonic analysis in phase space , 1989 .

[54]  H. Feichtinger,et al.  Irregular sampling theorems and series expansions of band-limited functions , 1992 .