A PET-MRI registration technique for PET studies of the rat brain.

Rat Brain Nobutaka Hayakawa, Koji Uemura, Kiichi Ishiwata, Yuhei Shimada, Nobuo Ogi, Tsukasa Nagaoka, Hinako Toyama, Keiichi Oda, Akira Tanaka, Kazutoyo Endo and Michio Senda POSITRON MEDICAL CENTER, TOKYO METROPOLITAN INSTITUTE OF GERONTOLOGY, TOKYO, JAPAN; SHOWA COLLEGE OF PHARMACEUTICAL SCIENCES, TOKYO, JAPAN; SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, TOKYO, JAPAN; DEPARTMENT OF VETERINARY CLINICAL PATHOLOGY, UNIVERSITY OF TOKYO, TOKYO, JAPAN; AND DEPARTMENT

[1]  M. A. Samphilipo,et al.  Multimodality Correlative Study of Canine Brain Tumors: Proton Magnetic Resonance Spectroscopy, Positron Emission Tomography, and Histology , 1994, Investigative radiology.

[2]  Adriaan A. Lammertsma,et al.  In vivo saturation kinetics of two dopamine transporter probes measured using a small animal positron emission tomography scanner , 1997, Journal of Neuroscience Methods.

[3]  L Ploux,et al.  In vivo radiolabel quantification in small-animal models. , 1998, Nuclear medicine and biology.

[4]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[5]  H. Onoe,et al.  Brain activation study by use of positron emission tomography in unanesthetized monkeys , 1994, Neuroscience Letters.

[6]  S. Nishiyama,et al.  Effects of Binge Pattern Cocaine Administration on Dopamine D1 and D2 Receptors in the Rat Brain: AnIn Vivo Study Using Positron Emission Tomography , 1996, The Journal of Neuroscience.

[7]  T. Yamashita,et al.  A high resolution PET for animal studies , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[8]  R. Bajcsy,et al.  Evaluation of Elastic Matching System for Anatomic (CT, MR) and Functional (PET) Cerebral Images , 1989, Journal of computer assisted tomography.

[9]  R. Myers,et al.  Evaluation of [11C]RTI-121 as a selective radioligand for PET studies of the dopamine transporter. , 1996, Nuclear Medicine and Biology.

[10]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[11]  H. Tsukada,et al.  Changes in cerebral blood flow and postsynaptic muscarinic cholinergic activity in rats with bilateral carotid artery ligation. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Hideo Tsukada,et al.  Use of positron emission tomography to measure the effects of nalmefene on D1 and D2 dopamine receptors in rat brain , 1997, Brain Research.

[13]  M. Senda,et al.  Quantitative ex vivo and in vitro receptor autoradiography using 11C-labeled ligands and an imaging plate: a study with a dopamine D2-like receptor ligand [11C]nemonapride. , 1999, Nuclear medicine and biology.

[14]  B. Ardekani,et al.  A Fully Automatic Multimodality Image Registration Algorithm , 1995, Journal of computer assisted tomography.

[15]  Y Yonekura,et al.  Noninvasive measurement of cerebral blood flow and glucose metabolic rate in the rat with high-resolution animal positron emission tomography (PET): a novel in vivo approach for assessing drug action in the brains of small animals. , 1995, Biological & pharmaceutical bulletin.

[16]  J. Brotchi,et al.  Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. , 1994, Neurological research.

[17]  J R MacFall,et al.  Normal Brain F‐18 FDG‐PET and MRI Anatomy , 1993, Clinical nuclear medicine.

[18]  R Myers,et al.  The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain II. Correlation between positron emission tomography and reaching behaviour , 1997, Neuroscience.

[19]  James F. Young,et al.  MicroPET: a high resolution PET scanner for imaging small animals , 1996, IEEE Nuclear Science Symposium Conference Record.

[20]  Adriaan A. Lammertsma,et al.  The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease , 1996 .

[21]  M. Senda,et al.  Comparison of three PET dopamine D2-like receptor ligands, [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone, in rats , 1999, Annals of nuclear medicine.

[22]  S. Stone-Elander,et al.  Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. , 1986, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[23]  Jean-Claude Baron,et al.  In Vivo Mapping of Brain Benzodiazepine Receptor Changes by Positron Emission Tomography After Focal Ischemia in the Anesthetized Baboon , 1993, Stroke.

[24]  M. Senda,et al.  An alternative synthesis of [11C]raclopride for routine use , 1999, Annals of nuclear medicine.

[25]  W. Heiss,et al.  Dynamic Penumbra Demonstrated by Sequential Multitracer PET after Middle Cerebral Artery Occlusion in Cats , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  Adriaan A. Lammertsma,et al.  CHAPTER 3 – Quantification of Dopamine Receptors and Transporter in Rat Striatum Using a Small Animal PET Scanner , 1996 .

[27]  Tadashi Nariai,et al.  Metabolite analysis of [11C]flumazenil in human plasma: Assessment as the standardized value for quantitative PET studies , 1998, Annals of nuclear medicine.