A Tour of Constrained Tensor Canonical Polyadic Decomposition

This paper surveys the use of constraints in tensor decomposition models. Constrained tensor decompositions have been extensively applied to chemometrics and array processing, but there is a growing interest in understanding these methods independently of the application of interest. We suggest a formalism that unifies various instances of constrained tensor decomposition, while shedding light on some possible extensions of existing methods.

[1]  Souleymen Sahnoun,et al.  A simultaneous sparse approximation method for multidimensional harmonic retrieval , 2015, Signal Process..

[2]  Xingyu Wang,et al.  Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation , 2016, Neurocomputing.

[3]  Jocelyn Chanussot,et al.  Nonnegative Tensor CP Decomposition of Hyperspectral Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Nikos D. Sidiropoulos,et al.  A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization , 2015, IEEE Transactions on Signal Processing.

[5]  Pierre Comon,et al.  Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings , 2015, IEEE Transactions on Signal Processing.

[6]  Sabine Van Huffel,et al.  Tensor based tumor tissue type differentiation using magnetic resonance spectroscopic imaging , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[7]  Jeremy E. Cohen About Notations in Multiway Array Processing , 2015, ArXiv.

[8]  Rémi Gribonval,et al.  Brain-Source Imaging: From sparse to tensor models , 2015, IEEE Signal Processing Magazine.

[9]  David Brie,et al.  Some Rank Conditions for the Identifiability of the Sparse Paralind Model , 2015, LVA/ICA.

[10]  Pierre Comon,et al.  Joint Decompositions with Flexible Couplings , 2015, LVA/ICA.

[11]  Rasmus Bro,et al.  Data Fusion in Metabolomics Using Coupled Matrix and Tensor Factorizations , 2015, Proceedings of the IEEE.

[12]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[13]  Pierre Comon,et al.  Fast Decomposition of Large Nonnegative Tensors , 2015, IEEE Signal Processing Letters.

[14]  Pierre Comon,et al.  Performance estimation for tensor CP decomposition with structured factors , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[16]  Pierre Comon,et al.  Multimodal approach to estimate the ocular movements during EEG recordings: A coupled tensor factorization method , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[17]  Morten Mørup,et al.  Non-negative Tensor Factorization with missing data for the modeling of gene expressions in the Human Brain , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[18]  Wim Van Paesschen,et al.  Block term decomposition for modelling epileptic seizures , 2014, EURASIP J. Adv. Signal Process..

[19]  Laurent Condat,et al.  A Generic Proximal Algorithm for Convex Optimization—Application to Total Variation Minimization , 2014, IEEE Signal Processing Letters.

[20]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[21]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorizations : An algorithmic perspective , 2014, IEEE Signal Processing Magazine.

[22]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[23]  Andrzej Cichocki,et al.  Multidimensional compressed sensing and their applications , 2013, WIREs Data Mining Knowl. Discov..

[24]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[25]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[26]  Ivan Markovsky,et al.  Low Rank Approximation - Algorithms, Implementation, Applications , 2018, Communications and Control Engineering.

[27]  David Brie,et al.  A blind sparse approach for estimating constraint matrices in Paralind data models , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[28]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[29]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[30]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[31]  J. Landsberg,et al.  Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.

[32]  Na Li,et al.  Some Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition , 2011, 1109.3831.

[33]  Pierre Comon,et al.  Computing the polyadic decomposition of nonnegative third order tensors , 2011, Signal Process..

[34]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[35]  Yonghui Song,et al.  Comparison of PARAFAC and PARALIND in modeling three‐way fluorescence data array with special linear dependences in three modes: a case study in 2‐naphthol , 2011 .

[36]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[37]  Nicolas Gillis Nonnegative matrix factorization : complexity, algorithms and applications , 2011 .

[38]  Peter D. Hoff,et al.  Separable covariance arrays via the Tucker product, with applications to multivariate relational data , 2010, 1008.2169.

[39]  Pierre Comon,et al.  Decomposing tensors with structured matrix factors reduces to rank-1 approximations , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[40]  Pierre Comon,et al.  Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.

[41]  R. Harshman,et al.  Modeling multi‐way data with linearly dependent loadings , 2009 .

[42]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[43]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[44]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[45]  André Lima Férrer de Almeida,et al.  Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes , 2008, IEEE Transactions on Signal Processing.

[46]  M. Ripert,et al.  Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. , 2008, Marine environmental research.

[47]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[48]  G. Golub,et al.  Foundations of numerical multilinear algebra: decomposition and approximation of tensors , 2007 .

[49]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[50]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[51]  Marieke E. Timmerman,et al.  Three-way component analysis with smoothness constraints , 2002 .

[52]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[53]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[54]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[55]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[56]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[57]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[58]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[59]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[60]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[61]  J. Kruskal,et al.  Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .

[62]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[63]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.