An improved dynamic model for angular contact ball bearings under constant preload

Abstract High-speed spindles are typically installed with angular contact ball bearings. This research has established a dynamic model for angular contact ball bearings under constant preload. By analyzing the constant preload mechanism, and the gyroscopic and centripetal forces, a dynamic non-linear model for angular contact ball bearings was proposed using Hertz contact theory. The model was solved by numerical iteration to obtain the dynamic parameters of an angular contact ball bearing which included: the dynamic normal contact force and contact angle, the maximum compressive stress and axial displacement, the contact pattern, stiffnesses, etc. To validate the model, a test device was designed which was equipped with a constant preloaded bearing group. By measuring the relative displacement of the bearings’ inner and outer rings under different conditions, the accuracy of the model was proved. This modeling method provided a theoretical basis for calculating bearing thermal characteristics, fatigue life, and an optimized radius of curvature of the bearing ring channel.