Laser-induced plasmonic colours on metals

Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (∼1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation.

[1]  Chunlei Guo,et al.  Colorizing metals with femtosecond laser pulses , 2008 .

[2]  Y. Long,et al.  CORRIGENDUM: Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing , 2013, Scientific Reports.

[3]  D. C. Zografopoulos,et al.  A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures , 2013, Journal of Lightwave Technology.

[4]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[5]  Zhiqiang Wei,et al.  Scalable, full-colour and controllable chromotropic plasmonic printing , 2015, Nature Communications.

[6]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[7]  Sebastiano Trusso,et al.  Laser Controlled Synthesis of Noble Metal Nanoparticle Arrays for Low Concentration Molecule Recognition , 2014, Micromachines.

[8]  Junichi Takahara,et al.  Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. , 2016, Nano letters.

[9]  Saulius Juodkazis,et al.  Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. , 2012, Optics express.

[10]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[11]  D. Czaplewski,et al.  All-metal structural color printing based on aluminum plasmonic metasurfaces. , 2016, Optics express.

[12]  Peter Nordlander,et al.  Fano resonances in plasmonic nanoparticle aggregates. , 2009, The journal of physical chemistry. A.

[13]  A. Vial,et al.  A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method , 2011 .

[14]  A. V. Narlikar,et al.  High field performance of nanodiamond doped MgB2 superconductor , 2008 .

[15]  Jacques Perriere,et al.  Nanoparticle formation by femtosecond laser ablation , 2007 .

[16]  C. Louis,et al.  Nucleation and Particle Growth Processes Involved in the Preparation of Silica-Supported Nickel Materials by a Two-Step Procedure , 1995 .

[17]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[18]  Rongkun Shen,et al.  Corrigendum: miR-218 is essential to establish motor neuron fate as a downstream effector of Isl1–Lhx3 , 2015, Nature Communications.

[19]  Boris N. Chichkov,et al.  Ablation of metals by ultrashort laser pulses , 1997 .

[20]  Juergen Jandeleit,et al.  Picosecond laser ablation of thin copper films , 1996 .

[21]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .

[22]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[23]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  Benjamin Gallinet,et al.  Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. , 2015, ACS nano.

[25]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[26]  L. A. Coldren,et al.  Single-chip integrated transmitters and receivers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[27]  Yung C. Shin,et al.  Modeling of multi-burst mode pico-second laser ablation for improved material removal rate , 2010 .

[28]  Catherine Higgitt,et al.  The Lycurgus Cup — A Roman nanotechnology , 2007 .

[29]  Xiaodong Yang,et al.  Aluminum plasmonic metamaterials for structural color printing. , 2015, Optics express.

[30]  G. Henkelman,et al.  Understanding the Nucleation and Growth of Metals on TiO2: Co compared to Au, Ni and Pt , 2013 .

[31]  L. Crema,et al.  Light-opals interaction modeling by direct numerical solution of Maxwell's equations. , 2014, Optics express.

[32]  Allen Taflove,et al.  Finite‐Difference Time‐Domain Analysis , 2005 .

[33]  S. Dou,et al.  Magnetic properties and magnetocaloric effect of NdMn2−xCuxSi2 compounds , 2014 .

[34]  A. Vorobyev,et al.  Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals , 2008 .

[35]  R. Poprawe,et al.  Investigation on laser micro ablation of metals using ns-multi-pulses , 2007 .

[36]  P Balling,et al.  Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films , 2013, Reports on progress in physics. Physical Society.

[37]  J. Molera,et al.  Evidence of nucleation and growth of metal Cu and Ag nanoparticles in lustre: AFM surface characterization , 2005 .

[38]  Chunlei Guo,et al.  Direct femtosecond laser surface nano/microstructuring and its applications , 2013 .

[39]  N. Fredj,et al.  Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films , 2011 .

[40]  Lin Li,et al.  Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles , 2014 .

[41]  Cheng Zhang,et al.  Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit , 2012, Scientific Reports.

[42]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[43]  Ronald Holzwarth,et al.  Ablation-cooled material removal with ultrafast bursts of pulses , 2016, Nature.

[44]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[45]  Dominique Barchiesi,et al.  Lycurgus Cup: inverse problem using photographs for characterization of matter. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  L. Noirie,et al.  Squeezing due to cascaded second-order nonlinearities in quasi-phase-matched media , 1997 .

[47]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[48]  Xiao Ming Goh,et al.  All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. , 2015, Optics express.

[49]  Pierre Berini,et al.  On the convergence and accuracy of the FDTD method for nanoplasmonics. , 2015, Optics express.

[50]  S. S. Harilal,et al.  The effect of ionization on cluster formation in laser ablation plumes , 2004 .

[51]  Lin Li,et al.  Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser , 2013 .

[52]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[53]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[54]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[55]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.