A new algorithm for singular value decomposition and its parallelization
暂无分享,去创建一个
[1] R Jessup,et al. A Parallel Algorithm for Computing the Singular Value Decomposition of a Matrix:A Revision of Argonne National Laboratory Tech. Report ANL/MCS-TM-102 ; CU-CS-623-92 , 1994 .
[2] Kinji Kimura,et al. Recent Developments of the mdLVs Algorithm for Singular Values and the I-SVD Algorithm for Singular Value Decomposition (Fast Algorithms in Computational Fluids : theory and applications) , 2008 .
[3] Robert A. van de Geijn,et al. A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..
[4] William K. Pratt,et al. Digital image processing (2nd ed.) , 1991 .
[5] Kinji Kimura,et al. Verification of dLVv Transformation for Singular Vector Computation with High Accuracy , 2006, PDPTA.
[6] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[7] Yoshimasa Nakamura,et al. Accurate computation of singular values in terms of shifted integrable schemes , 2006 .
[8] Alston S. Householder,et al. Handbook for Automatic Computation , 1960, Comput. J..
[9] Inderjit S. Dhillon,et al. Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .
[10] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[11] Jack J. Dongarra,et al. A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..
[12] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[13] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[14] K. V. Fernando. On computing an eigenvector of a tridiagonal matrix , 1997 .
[15] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[16] Kinji Kimura,et al. An Evaluation of Singular Value Computation by the Discrete Lotka-Volterra System , 2005, PDPTA.
[17] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[18] Masami Takata,et al. A new singular value decomposition algorithm suited to parallelization and preliminary results , 2006 .
[19] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[20] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[21] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.