Computer-aided diagnosis in chest radiography

Chest radiographs account for more than half of all radiological examinations; the chest is the “mirror of health and disease”. This thesis is about techniques for computer analysis of chest radiographs. It describes methods for texture analysis and segmenting the lung fields and rib cage in a chest film. It includes a description of an automatic system for detecting regions with abnormal texture, that is applied to a database of images from a tuberculosis screening program.

[1]  L. Garland On the scientific evaluation of diagnostic procedures. , 1949, Radiology.

[2]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[3]  G. Lodwick,et al.  THE CODING OF ROENTGEN IMAGES FOR COMPUTER ANALYSIS AS APPLIED TO LUNG CANCER. , 1963, Radiology.

[4]  W J NETTLETON,et al.  DIGITAL COMPUTER DETERMINATION OF A MEDICAL DIAGNOSTIC INDEX DIRECTLY FROM CHEST X-RAY IMAGES. , 1964, IEEE transactions on bio-medical engineering.

[5]  J L Lehr,et al.  Solitary pulmonary lesions. Computer-aided differential diagnosis and evaluation of mathematical methods. , 1967, Radiology.

[6]  K Shinoda,et al.  Computer analysis of radiographic images. , 1968, The Journal of Nihon University School of Dentistry.

[7]  J. Yerushalmy The statistical assessment of the variability in observer perception and description of roentgenographic pulmonary shadows. , 1969, Radiologic clinics of North America.

[8]  S. Dwyer,et al.  Computer diagnosis of heart disease. , 1971, The Radiologic clinics of North America.

[9]  A. Wayne Whitney,et al.  A Direct Method of Nonparametric Measurement Selection , 1971, IEEE Transactions on Computers.

[10]  Ernest L. Hall,et al.  A Survey of Preprocessing and Feature Extraction Techniques for Radiographic Images , 1971, IEEE Transactions on Computers.

[11]  S. Dwyer,et al.  Automated radiographic diagnosis via feature extraction and classification of cardiac size and shape descriptors. , 1972, IEEE transactions on bio-medical engineering.

[12]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[13]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[14]  H L Kundel,et al.  Notes: Feasibility of classifying disseminated pulmonary diseases based on their Fourier spectra. , 1973, Investigative Radiology.

[15]  J. Sklansky,et al.  Tumor detection in radiographs. , 1973, Computers and biomedical research, an international journal.

[16]  Jun-ichiro Toriwaki,et al.  Pattern recognition of chest X-ray images , 1973, Comput. Graph. Image Process..

[17]  N Sezaki,et al.  Automatic computation of the cardiothoracic ratio with application to mass screening. , 1973, IEEE transactions on bio-medical engineering.

[18]  Ernest L. Hall,et al.  An Optical-Digital System For Automatic Processing Of Chest X-Rays , 1974 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  Charles A. Laszlo,et al.  The Measurement of Total Lung Capacity Based on a Computer Analysis of Anterior and Lateral Radiographic Chest Images , 1974 .

[21]  William B. Thompson,et al.  Computer Diagnosis of Pneumoconiosis , 1974, IEEE Trans. Syst. Man Cybern..

[22]  R S Ledley,et al.  A texture analysis method in classification of coal workers' pneumoconiosis. , 1975, Computers in biology and medicine.

[23]  Robert A. Hummel,et al.  Image Enhancement by Histogram transformation , 1975 .

[24]  E. Hall,et al.  Computer Classification of Pneumoconiosis from Radiographs of Coal Workers , 1975, IEEE Transactions on Biomedical Engineering.

[25]  Harry Wechsler,et al.  Automatic Detection Of Rib Contours in Chest Radiographs , 1975, IJCAI.

[26]  Dana H. Ballard,et al.  A Ladder-Structured Decision Tree for Recognizing Tumors in Chest Radiographs , 1976, IEEE Transactions on Computers.

[27]  Dana Harry Ballard Hierarchic Recognition of Tumors in Chest Radiographs with Computer , 1976 .

[28]  R. Kruger,et al.  Automated computer screening of chest radiographs for pneumoconiosis. , 1976, Investigative radiology.

[29]  Henry Stark,et al.  AN OPTICAL DIGITAL APPROACH TO THE PATTERN RECOGNITION OF COAL-WORKERS' PNEUMOCONIOSIS* , 1977 .

[30]  Harry Wechsler,et al.  Finding the rib cage in chest radiographs , 1977, Pattern Recognit..

[31]  J. H. Kulick,et al.  Automatic Rib Detection in Chest Radiographs , 1977, IJCAI.

[32]  Harry Wechsler,et al.  Image processing algorithms applied to rib boundary detection in chest radiographs , 1978 .

[33]  G S Lodwick,et al.  Towards computer analysis of pulmonary infiltration. , 1978, Investigative radiology.

[34]  Larry S. Davis,et al.  Texture Analysis Using Generalized Co-Occurrence Matrices , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Dana H. Ballard,et al.  MODEL-DIRECTED DETECTION OF RIBS IN CHEST RADIOGRAPHS. , 1979 .

[36]  H L Kundel,et al.  Contrast gradient and the detection of lung nodules. , 1979, Investigative radiology.

[37]  J R Jagoe Gradient pattern coding--an application to the measurement of pneumoconiosis in chest x rays. , 1979, Computers and biomedical research, an international journal.

[38]  Olivier D. Faugeras,et al.  Decorrelation Methods of Texture Feature Extraction , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  K. Laws Textured Image Segmentation , 1980 .

[40]  Azriel Rosenfeld,et al.  Experiments with texture classification using averages of local pattern matches , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  W. E. Miller,et al.  Lung cancer detected during a screening program using four-month chest radiographs. , 1983, Radiology.

[42]  J. Sklansky,et al.  Two-Resolution Detection of Lung Tumors in Chest Radiographs , 1984 .

[43]  M. Giger,et al.  Investigation of basic imaging properties in digital radiography. 2. Noise Wiener spectrum. , 1984, Medical physics.

[44]  William A. Lampeter ANDS-V1 Computer Detection of Lung Nodules , 1985, Medical Imaging.

[45]  Kunio Doi,et al.  The Effect Of Digital Unsharp Masking On The Detectability Of Interstitial Infiltrates And Pneumothoraces , 1985, Medical Imaging.

[46]  C E Ravin,et al.  Digital synthesis of lung nodules. , 1985, Investigative radiology.

[47]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[48]  K. Doi,et al.  Digital radiography of subtle pulmonary abnormalities: an ROC study of the effect of pixel size on observer performance. , 1986, Radiology.

[49]  J C Wandtke,et al.  Computerized search of chest radiographs for nodules. , 1986, Investigative radiology.

[50]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.

[51]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  C E Ravin,et al.  Histogram-directed processing of digital chest images. , 1986, Investigative radiology.

[53]  M. Unser Local linear transforms for texture measurements , 1986 .

[54]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Fredrik Bergholm,et al.  Edge Focusing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  A. Mackay "Textures" , 1987 .

[57]  K Doi,et al.  Localization of inter-rib spaces for lung texture analysis and computer-aided diagnosis in digital chest images. , 1988, Medical physics.

[58]  M. Giger,et al.  Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. , 1988, Medical physics.

[59]  S Katsuragawa,et al.  Image feature analysis and computer-aided diagnosis in digital radiography: detection and characterization of interstitial lung disease in digital chest radiographs. , 1988, Medical physics.

[60]  M I Sezn,et al.  Automatic anatomically selective image enhancement in digital chest radiography. , 1989, IEEE transactions on medical imaging.

[61]  Michael Unser,et al.  Multiresolution Feature Extraction and Selection for Texture Segmentation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  E. Krupinski,et al.  Searching for lung nodules. Visual dwell indicates locations of false-positive and false-negative decisions. , 1989, Investigative radiology.

[63]  S Katsuragawa,et al.  Image feature analysis and computer-aided diagnosis in digital radiography: classification of normal and abnormal lungs with interstitial disease in chest images. , 1989, Medical physics.

[64]  D. Burr,et al.  Evidence for edge and bar detectors in human vision , 1989, Vision Research.

[65]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[66]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[67]  S Katsuragawa,et al.  Quantitative computer-aided analysis of lung texture in chest radiographs. , 1990, Radiographics : a review publication of the Radiological Society of North America, Inc.

[68]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  M. E. Jernigan,et al.  Texture Analysis and Discrimination in Additive Noise , 1990, Comput. Vis. Graph. Image Process..

[71]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  M L Giger,et al.  Pulmonary nodules: computer-aided detection in digital chest images. , 1990, Radiographics : a review publication of the Radiological Society of North America, Inc.

[73]  Y. Wu,et al.  Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: pilot study. , 1990, Radiology.

[74]  K. Doi,et al.  Image feature analysis and computer-aided diagnosis in digital radiography: automated analysis of sizes of heart and lung in chest images. , 1990, Medical physics.

[75]  K Doi,et al.  The nature and subtlety of abnormal findings in chest radiographs. , 1991, Medical physics.

[76]  K Doi,et al.  Image feature analysis and computer-aided diagnosis in digital radiography: automated delineation of posterior ribs in chest images. , 1991, Medical physics.

[77]  N Nakamori,et al.  Effect of heart-size parameters computed from digital chest radiographs on detection of cardiomegaly. Potential usefulness for computer-aided diagnosis. , 1991, Investigative radiology.

[78]  Hirotsugu Takabatake,et al.  Experimental system for detecting lung nodules by chest x-ray image processing , 1991, Electronic Imaging.

[79]  Michael F. McNitt-Gray,et al.  Brightness and contrast adjustments for different tissue densities in digital chest radiographs , 1991, Medical Imaging.

[80]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[81]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  K. Doi,et al.  Image feature analysis and computer-aided diagnosis in digital radiography: automated detection of pneumothorax in chest images. , 1992, Medical physics.

[83]  M. Giger,et al.  Potential usefulness of computerized nodule detection in screening programs for lung cancer. , 1992, Investigative radiology.

[84]  Hirotsugu Takabatake,et al.  Development of a computer-aided detection system for lung cancer diagnosis , 1992, Medical Imaging.

[85]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[86]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[87]  M L Giger,et al.  Image feature analysis of false-positive diagnoses produced by automated detection of lung nodules. , 1992, Investigative radiology.

[88]  Maryellen L. Giger,et al.  Computerized scheme for the detection of pulmonary nodules. A nonlinear filtering technique. , 1992 .

[89]  R. Engle,et al.  Attempts to Use Computers as Diagnostic Aids in Medical Decision Making: A Thirty-Year Experience , 2015, Perspectives in biology and medicine.

[90]  Michael F. McNitt-Gray,et al.  Pattern classification approach to segmentation of chest radiographs , 1993 .

[91]  H L Kundel,et al.  A Perceptually Based Method for Enhancing Pulmonary Nodule Recognition , 1993, Investigative radiology.

[92]  KATSUMI ABE,et al.  Computer-Aided Diagnosis in Chest Radiography: Preliminary Experience , 1993, Investigative radiology.

[93]  M. Giger,et al.  Digital Radiography , 1993, Acta radiologica.

[94]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[95]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[96]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[97]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[98]  J. Glassroth Diagnosis of tuberculosis , 1993 .

[99]  Matthew T. Freedman,et al.  Shape feature analysis using artificial neural networks for improvements of hybrid lung nodule detection system , 1993, Medical Imaging.

[100]  Max A. Viergever,et al.  Higher Order Differential Structure of Images , 1993, IPMI.

[101]  S Katsuragawa,et al.  Automated selection of regions of interest for quantitative analysis of lung textures in digital chest radiographs. , 1993, Medical physics.

[102]  M. Giger,et al.  Digital image subtraction of temporally sequential chest images for detection of interval change. , 1994, Medical physics.

[103]  Matthew T. Freedman,et al.  Convolution neural-network-based detection of lung structures , 1994, Medical Imaging.

[104]  SHOJI KIDO,et al.  An Image Analyzing System for Interstitial Lung Abnormalities in Chest Radiography, Detection and Classification by Laplacian‐Gaussian Filtering and Linear Opacity Judgment , 1994, Investigative radiology.

[105]  Ralph Weissleder,et al.  Primer of Diagnostic Imaging , 1994 .

[106]  C E Ravin,et al.  Chest radiography: estimated lung volume and projected area obscured by the heart, mediastinum, and diaphragm. , 1994, Radiology.

[107]  M L Giger,et al.  Computerized detection of abnormal asymmetry in digital chest radiographs. , 1994, Medical physics.

[108]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[109]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  D. Gauntt,et al.  X-ray tube potential, filtration, and detector considerations in dual-energy chest radiography. , 1994, Medical physics.

[111]  Matthew T. Freedman,et al.  Artificial convolution neural network techniques and applications for lung nodule detection , 1995, IEEE Trans. Medical Imaging.

[112]  G G Cox,et al.  Contrast-detail analysis of image degradation due to lossy compression. , 1995, Medical physics.

[113]  S Katsuragawa,et al.  Computer-aided diagnosis for interstitial infiltrates in chest radiographs: optical-density dependence of texture measures. , 1995, Medical physics.

[114]  H. K. Huang,et al.  Feature selection in the pattern classification problem of digital chest radiograph segmentation , 1995, IEEE Trans. Medical Imaging.

[115]  A. Ardeshir Goshtasby,et al.  Automatic detection of rib borders in chest radiographs , 1995, IEEE Trans. Medical Imaging.

[116]  S Katsuragawa,et al.  Computerized analysis of interstitial infiltrates on chest radiographs: a new scheme based on geometric pattern features and Fourier analysis. , 1995, Academic radiology.

[117]  K. Doi,et al.  Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. , 1995, Medical physics.

[118]  Heinrich Müller,et al.  Image warping with scattered data interpolation , 1995, IEEE Computer Graphics and Applications.

[119]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[120]  Fumihiko Hashimoto,et al.  Can Machine Think , 1995 .

[121]  Timothy F. Cootes,et al.  Non-linear generalization of point distribution models using polynomial regression , 1995, Image Vis. Comput..

[122]  J Ikezoe,et al.  Fractal analysis of interstitial lung abnormalities in chest radiography. , 1995, Radiographics : a review publication of the Radiological Society of North America, Inc.

[123]  Joachim Weikert,et al.  Multiscale Texture Enhancement , 1995, CAIP.

[124]  J. Boone,et al.  A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images. , 1995, Medical physics.

[125]  Doi Kunio,et al.  Recent Progress in Development of Computer-Aided Diagnostic (CAD) Schemes in Radiology , 1995 .

[126]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[127]  Erkki Oja,et al.  Co-occurrence map: Quantizing multidimensional texture histograms , 1996, Pattern Recognit. Lett..

[128]  Matthew T. Freedman,et al.  Reduction of false positives in lung nodule detection using a two-level neural classification , 1996, IEEE Trans. Medical Imaging.

[129]  K. Doi,et al.  Effect of a computer-aided diagnosis scheme on radiologists' performance in detection of lung nodules on radiographs. , 1996, Radiology.

[130]  F BrownStephen,et al.  Computer-Aided Diagnosis Using Anatomical Models , 1996 .

[131]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[132]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[133]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[134]  G G Cox,et al.  The effects of lossy compression on the detection of subtle pulmonary nodules. , 1996, Medical physics.

[135]  C E Floyd,et al.  Diffuse nodular lung disease on chest radiographs: a pilot study of characterization by fractal dimension. , 1996, AJR. American journal of roentgenology.

[136]  Timothy F. Cootes,et al.  Active Shape Models and the shape approximation problem , 1996, Image Vis. Comput..

[137]  T Kobayashi,et al.  Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis. , 1997, Medical physics.

[138]  Maryellen L. Giger,et al.  Adaptive feature analysis of false positives for computerized detection of lung nodules in digital chest images , 1997, Medical Imaging.

[139]  K Doi,et al.  Digital chest radiography: effect of temporal subtraction images on detection accuracy. , 1997, Radiology.

[140]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[141]  M. Prokop,et al.  Digital radiography of the chest : Comparison of the selenium detector with other imaging systems , 1997 .

[142]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[143]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[144]  Lewis D. Griffin Scale-imprecision space , 1997, Image and Vision Computing.

[145]  C. Floyd,et al.  Fractal texture analysis in computer-aided diagnosis of solitary pulmonary nodules. , 1997, Academic radiology.

[146]  Ehsan Samei,et al.  The performance of digital x-ray imaging systems in detection of subtle lung nodules , 1998 .

[147]  Sadayasu Ono,et al.  Contrast mapping and evaluation for electronic X-ray images on CRT display monitor , 1997, IEEE Transactions on Medical Imaging.

[148]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[149]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[150]  Arnold R. Cowen,et al.  Progress with an “all-wavelet” approach to image enhancement and de-noising of direct digital thorax radiographic images , 1997 .

[151]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[152]  J L Grashuis,et al.  Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. , 1998, Medical physics.

[153]  J M Carreira,et al.  Automatic calculation of total lung capacity from automatically traced lung boundaries in postero-anterior and lateral digital chest radiographs. , 1998, Medical physics.

[154]  M S Brown,et al.  Knowledge-based method for segmentation and analysis of lung boundaries in chest X-ray images. , 1998, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[155]  Giuseppe Russo,et al.  Automatic detection of lung nodules: application to radiogram lossy coding , 1998, Medical Imaging.

[156]  Jörg Dahmen,et al.  Detection and compensation of rib structures in chest radiographs for diagnostic assistance , 1998, Medical Imaging.

[157]  S Katsuragawa,et al.  Computer-aided diagnosis for detection of interstitial opacities on chest radiographs. , 1998, AJR. American journal of roentgenology.

[158]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[159]  S K Mun,et al.  Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. , 1998, Medical physics.

[160]  Sebastian Lange,et al.  Radiology of Chest Diseases , 1998 .

[161]  M. J. Carreira,et al.  Computer-aided diagnoses: automatic detection of lung nodules. , 1998, Medical physics.

[162]  H Kanamori,et al.  Optimum tube voltage for chest radiographs obtained by psychophysical analysis. , 1998, Medical physics.

[163]  M L Giger,et al.  Computerized delineation and analysis of costophrenic angles in digital chest radiographs. , 1998, Academic radiology.

[164]  G G Cox,et al.  Comparison of a cathode-ray-tube and film for display of computed radiographic images. , 1998, Medical physics.

[165]  S. Armato,et al.  Automated lung segmentation in digitized posteroanterior chest radiographs. , 1998, Academic radiology.

[166]  Kunio Doi,et al.  Alaysis of image features of histograms of edge gradient for false positive reduction in lung nodule detection in chest radiographs , 1998, Medical Imaging.

[167]  L. Clarke,et al.  Fragmentary window filtering for multiscale lung nodule detection: preliminary study. , 1998, Academic radiology.

[168]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[169]  M L Giger,et al.  Automated lung segmentation in digital lateral chest radiographs. , 1998, Medical physics.

[170]  Kanti V. Mardia,et al.  The Statistical Analysis of Shape , 1998 .

[171]  Hiroyuki Yoshida Multiresolution non-rigid image registration method and its application to removal of normal anatomic structures in chest radiographs , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[172]  Paul Suetens,et al.  Active Shape Model-Based Segmentation of Digital X-ray Images , 1999, MICCAI.

[173]  C J Vyborny,et al.  Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. , 1999, Academic radiology.

[174]  K. Doi,et al.  Computer-aided diagnosis of pulmonary nodules: results of a large-scale observer test. , 1999, Radiology.

[175]  G. Tourassi Journey toward computer-aided diagnosis: role of image texture analysis. , 1999, Radiology.

[176]  Hidefumi Kobatake,et al.  Detection of cancerous tumors on chest X-ray images -candidate detection filter and its evaluation , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[177]  Bram van Ginneken,et al.  Automatic Segmentation of Lung Fields in Chest Radiographs , 1999, MICCAI.

[178]  K. Doi,et al.  Computer-aided diagnosis in radiology: potential and pitfalls. , 1999, European journal of radiology.

[179]  Song-Chun Zhu,et al.  Equivalence of Julesz and Gibbs texture ensembles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[180]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[181]  Stiliyan Kalitzin,et al.  Computer Assisted Human Follicle Analysis for Fertility Prospects with 3D Ultrasound , 1999, IPMI.

[182]  Pavel Paclík,et al.  Adaptive floating search methods in feature selection , 1999, Pattern Recognit. Lett..

[183]  K. Doi,et al.  Iterative image warping technique for temporal subtraction of sequential chest radiographs to detect interval change. , 1999, Medical physics.

[184]  Ronald J. Geluk Digital equalization radiography , 1999, Medical Imaging.

[185]  K Nakamura,et al.  Effect of an artificial neural network on radiologists' performance in the differential diagnosis of interstitial lung disease using chest radiographs. , 1999, AJR. American journal of roentgenology.

[186]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[187]  Michael Kohnen,et al.  Model-based analysis of chest radiographs , 2000, Medical Imaging: Image Processing.

[188]  Hiroyuki Yoshida,et al.  Computerized detection of pulmonary nodules in chest radiographs: reduction of false positives based on symmetry between left and right lungs , 2000, Medical Imaging: Image Processing.

[189]  Viergever,et al.  Retrospective shading correction based on entropy minimization , 2000, Journal of microscopy.

[190]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[191]  S Katsuragawa,et al.  Improved contralateral subtraction images by use of elastic matching technique. , 2000, Medical physics.

[192]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[193]  K Nakamura,et al.  Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. , 2000, Radiology.

[194]  Bostjan Likar,et al.  Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization , 2000, MICCAI.

[195]  H Yoshida,et al.  Contralateral subtraction: a novel technique for detection of asymmetric abnormalities on digital chest radiographs. , 2000, Medical physics.

[196]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[197]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[198]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .