Optimizing quantum heuristics with meta-learning

[1]  Stuart Hadfield,et al.  On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing , 2018, ACM Transactions on Quantum Computing.

[2]  P. Barkoutsos,et al.  Entanglement production and convergence properties of the variational quantum eigensolver , 2020, 2003.12490.

[3]  Stuart Hadfield,et al.  Characterizing local noise in QAOA circuits , 2020, IOP SciNotes.

[4]  Yuchun Wu,et al.  Effects of Quantum Noise on Quantum Approximate Optimization Algorithm , 2019, Chinese Physics Letters.

[5]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[6]  Murphy Yuezhen Niu,et al.  Optimizing QAOA: Success Probability and Runtime Dependence on Circuit Depth , 2019, 1905.12134.

[7]  Tad Hogg,et al.  From Ans\"atze to Z-gates: a NASA View of Quantum Computing , 2019, 1905.02860.

[8]  Nicholas C. Rubin,et al.  $XY$-mixers: analytical and numerical results for QAOA , 2019, 1904.09314.

[9]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[10]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[11]  G. Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[12]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[13]  Giacomo Nannicini,et al.  Performance of hybrid quantum/classical variational heuristics for combinatorial optimization , 2018, Physical review. E.

[14]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[15]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[16]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[17]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[18]  Joshua Achiam,et al.  On First-Order Meta-Learning Algorithms , 2018, ArXiv.

[19]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[20]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[21]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[22]  Ben Moseley,et al.  Bayesian optimisation for variational quantum eigensolvers , 2018 .

[23]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[24]  Rupak Biswas,et al.  Quantum Approximate Optimization with Hard and Soft Constraints , 2017 .

[25]  Quoc V. Le,et al.  Neural Optimizer Search with Reinforcement Learning , 2017, ICML.

[26]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[27]  Misha Denil,et al.  Learned Optimizers that Scale and Generalize , 2017, ICML.

[28]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[29]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[30]  Sangram Ganguly,et al.  DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution , 2017, KDD.

[31]  Hong Yu,et al.  Meta Networks , 2017, ICML.

[32]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[33]  Brian Moritz,et al.  Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors , 2016, Science.

[34]  Misha Denil,et al.  Learning to Learn without Gradient Descent by Gradient Descent , 2016, ICML.

[35]  Hugo Larochelle,et al.  Optimization as a Model for Few-Shot Learning , 2016, ICLR.

[36]  Roman Neruda,et al.  Evolution Strategies for Deep Neural Network Models Design , 2017, ITAT.

[37]  C A Nelson,et al.  Learning to Learn , 2017, Encyclopedia of Machine Learning and Data Mining.

[38]  N. Rubin A Hybrid Classical/Quantum Approach for Large-Scale Studies of Quantum Systems with Density Matrix Embedding Theory , 2016, 1610.06910.

[39]  Daan Wierstra,et al.  Meta-Learning with Memory-Augmented Neural Networks , 2016, ICML.

[40]  Marcin Andrychowicz,et al.  Learning to learn by gradient descent by gradient descent , 2016, NIPS.

[41]  M. Hastings,et al.  Training A Quantum Optimizer , 2016, 1605.05370.

[42]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[43]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[44]  Aaron Klein,et al.  Efficient and Robust Automated Machine Learning , 2015, NIPS.

[45]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[46]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[47]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[48]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[49]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[50]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[51]  Bogdan Gabrys,et al.  Metalearning: a survey of trends and technologies , 2013, Artificial Intelligence Review.

[52]  Jordi Torres,et al.  Towards energy-aware scheduling in data centers using machine learning , 2010, e-Energy.

[53]  G. Evans,et al.  Learning to Optimize , 2008 .

[54]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[55]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[56]  J. Spall,et al.  Theoretical framework for comparing several popular stochastic optimization approaches , 2002 .

[57]  Paul Charbonneau,et al.  An Introduction to Genetic Algorithms for Numerical Optimization , 2002 .

[58]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[59]  Robert Krauthgamer,et al.  A polylogarithmic approximation of the minimum bisection , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[60]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[61]  Sepp Hochreiter,et al.  The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[62]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[63]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[64]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[65]  H. Schulz Interacting fermions in one dimension: from weak to strong correlation , 1993, cond-mat/9302006.

[66]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[67]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[68]  Yoshua Bengio,et al.  Learning a synaptic learning rule , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[69]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[70]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[71]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .